
OpenREM Documentation
Release 0.3.9

Ed McDonagh

March 09, 2014

Contents

i

ii

OpenREM Documentation, Release 0.3.9

OpenREM is an opensource framework created for the purpose of radiation exposure monitoring. The software is
capable of importing and displaying data from a wide variety of x-ray dose related sources, and then enables easy
export of the data in a form that is suitable for further analysis by suitably qualified medical physics personnel.

Please see openrem.org for more details.

Contents:

Contents 1

http://openrem.org

OpenREM Documentation, Release 0.3.9

2 Contents

CHAPTER 1

Installation instructions

1.1 Quick setup

Note: Most path names are represented using the linux convention of a / separator. If you are installing in a Windows
environment you will need to use the Windows \ separator.

1. Install python (might need to be 2.7)

2. Install setuptools and pip

3. Install OpenREM

• pip install OpenREM-ver.tar.gz

4. Configure OpenREM

• Locate install location, typically something/lib/python2.7/site-packages/openrem

• There are two files that need renaming:

– openrem/openrem/settings.py.example to openrem/openrem/settings.py

– openrem/openrem/wsgi.py.example to openrem/openrem/wsgi.py

• in the settings.py file, set the database details.

• For testing ONLY, use

– ’ENGINE’: ’django.db.backends.sqlite3’,

– ’NAME’: ’/ENTER/PATH/WHERE/DB/FILE/CAN/GO’

* Windows example: ’NAME’: ’C:\Documents\User\OpenREM\openrem.db’

* Linux example: ’NAME’: ’/var/openrem/openrem.db’

5. Create the database

• python path/to/openrem/manage.py syncdb

• (optional when just testing) python path/to/openrem/manage.py
convert_to_south remapp

6. Start test web server

• python path/to/openrem/manage.py runserver

3

http://www.pip-installer.org/en/latest/installing.html

OpenREM Documentation, Release 0.3.9

• If you are using a headless server and need to be able to see the web interface from another
machine, use python path/to/openrem/manage.py runserver x.x.x.x:8000 re-
placing the ‘x’ with the IP address of the server and ‘8000’ with the port you wish to use.

7. Open the web addesss given, appending /openrem (http://localhost:8000/openrem)

8. Add some data!

• openrem_rdsr.py rdsrfile.dcm

1.2 More in depth process

1. Install virtualenv or maybe virtualenvwrapper Recommended if the server is ever going to be used for more
than one python application – virtualenv sets up an isolated python environment

2. Install OpenREM As per the Quick setup instructions above. Don’t configure OpenREM yet

3. Install a production database SQLite is great for getting things running quickly and testing if the setup works,
but is really not recommended for production use on any scale. Therefore it is recommended to use a
different database such as PostgreSQL or MySQL.

Here are the authors instructions for installing PostgreSQL on linux:

1.2.1 Installing PostgreSQL for OpenREM on Ubuntu linux

Install PostgreSQL and the python connector

• sudo apt-get install postgresql

• sudo apt-get build-dep python-psycopg2

The second command installed a lot of things, at least some of which are necessary for this to work!

If you are using a virtualenv, make sure you are in it and it is active (source bin/activate)

• pip install psycopg2

Create a user for the database

• sudo passwd postgres

• Enter password, twice

• sudo -u postgres createuser -P openrem_user

• Enter password, twice

• Superuser, No

• Create databases, No

• Create new roles, No

4 Chapter 1. Installation instructions

http://localhost:8000/openrem
https://pypi.python.org/pypi/virtualenv
http://virtualenvwrapper.readthedocs.org/en/latest/
http://www.postgresql.org
http://www.mysql.com

OpenREM Documentation, Release 0.3.9

Optional: Specify the location for the database

You might like to do this if you want to put the database on an encrypted location

For this example, I’m going to assume all the OpenREM programs and data are in the folder
/var/openrem/:

• sudo /etc/init.d/postgresql stop

• mkdir /var/openrem/database

• sudo cp -aRv /var/lib/postgresql/9.1/main
/var/openrem/database/

• sudo nano /etc/postgresql/9.1/main/postgresql.conf

Change the line

• data_directory = ’/var/lib/postgresql/9.1/main’ to

• data_directory = ’/var/openrem/database/main’

• sudo /etc/init.d/postgresql start

Create the database

• su postgres

• psql template1

• CREATE DATABASE openrem_db OWNER openrem_user ENCODING ’UTF8’;

• \q

• exit

Change the security configuration

The default security settings are too restrictive to allow access to the database.

• sudo nano /etc/postgresql/9.1/main/pg_hba.conf

• Add the following line:

– local openrem_db openrem_user md5

• sudo /etc/init.d/postgresql restart

Configure OpenREM to use the database

Find and edit the settings file, eg

• nano local/lib/python2.7/site-packages/openrem/openrem/settings.py

Set the following (changing name, user and password as appropriate):

• ’ENGINE’: ’django.db.backends.postgresql_psycopg2’,

• ’NAME’: ’openrem_db’,

• ’USER’: ’openremuser’,

• ’PASSWORD’: ’openrem_pw’,

1.2. More in depth process 5

OpenREM Documentation, Release 0.3.9

Fire it up with OpenREM

• python path/to/openrem/manage.py syncdb

• python path/to/openrem/manage.py convert_to_south remapp

4. Install and configure a production webserver Unlike the database, the production webserver can be left till
later and can be changed again at any time.

However, for performance it is recommended that a production webserver is used. Popular choices would
be either Apache or you can do as the cool kids do and use Gunicorn with nginx.

5. Configure OpenREM Follow the ‘Configure OpenREM’ instuctions in the Quick setup section above, but this
time with the production database details.

Configure the production webserver too.

6. Create the database

• python path/to/openrem/manage.py syncdb

7. Convert the database to use South South is a django application to manage database migrations. Using South
means that future changes to the database model can be calculated and executed automatically with simple
commands when OpenREM is upgraded.

• python path/to/openrem/manage.py convert_to_south remapp

1.3 Related guides

1.3.1 Running Conquest on Windows as a service
Note:

Content contributed by DJ Platten, with edit by ET McDonagh

This guide assumes Conquest has already been installed and runs ok. These instructions are based on
Windows XP. Run as a service

1. Make sure conquest isn’t running.

2. Open a file browser and navigate to your conquest folder.

3. Right-hand click on the “ConquestDICOMServer.exe” file and choose “Run as...”

4. Enter the username and password of a Windows user with administrator rights.

5. Once conquest is running, click on the “Install server as NT service” on the “Configuration” tab.

6. Close the conquest Window.

7. Log in to Windows as a user with administrator rights.

8. Go to “Control panel” -> “Administrative Tools” -> “Services”.

9. There will be a service with the same name as conquest’s AE title. Right-hand click the mouse on
this service and select “Properties”.

10. On the “Log On” tab check the box that says “Allow service to interact with the desktop”.

11. Click “Apply” then “OK”.

6 Chapter 1. Installation instructions

http://httpd.apache.org
http://www.robgolding.com/blog/2011/11/12/django-in-production-part-1---the-stack/

OpenREM Documentation, Release 0.3.9

12. Right-hand click on the service again and click “Restart”.

The “Allow service to interact with the desktop” seems to be necessary for the batch to run that puts the
dose report into OpenREM.

Firewall settings

Windows is able to change its firewall settings after you think everything is working ok! Assuming you
have control of the firewall, add three port exceptions to the Windows firewall on the server computer:
ports 80 and 443 for Apache, and whichever port that was chosen for conquest (104 is the port allocated
to DICOM, but you may have used a higher port above 1024 for permissions reasons).

The firewall instructions at portforward.com were found to be a useful guide for this.

1.3.2 Backing up MySQL on Windows

Note: Content contributed by DJ Platten

These instructions are based on Windows XP.

As a one-off, create a MySQL user called backup with a password of backup that has full rights to the
database:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -u root -p -e "CREATE USER ’backup’@’localhost’ IDENTIFIED BY ’backup’";

Grant the backup user full privileges on the database called openremdatabasemysql:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -u root -p -e "GRANT ALL PRIVILEGES ON openremdatabasemysql .* TO ’backup’@’localhost’";

Grant the backup user privileges to create databases:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -u root -p -e "GRANT CREATE ON *.* TO ’backup’@’localhost’";

Reload the privileges to ensure that MySQL registers the new ones:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -u root -p -e "FLUSH PRIVILEGES";

To backup the contents of the database from the command line to a file called backup.sql (note that
the lack of spaces after the -u and -p is not a typo):

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqldump.exe -ubackup -pbackup openremdatabasemysql > backup.sql

To restore the database, assuming that it doesn’t exist anymore, first it needs to be created:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -ubackup -pbackup -e "CREATE DATABASE openremdatabasemysql";

Then restore the contents of the database from a file called backup.sql:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -ubackup -pbackup openremdatabasemysql < backup.sql

An example DOS batch file to back up the contents of the openremdatabasemysql database using a
time stamp of the form yyyy-mm-dd_hhmm, zip up the resulting file, delete the uncompressed version
and then copy it to a network location (the network copy will only work if the user that runs the batch file
has permission on the network):

1.3. Related guides 7

http://portforward.com/english/routers/firewalling/Microsoft/WindowsXPFirewallFirewall/Apache.htm

OpenREM Documentation, Release 0.3.9

@echo off
For /f "tokens=1-4 delims=/ " %%a in (’date /t’) do (set mydate=%%c-%%b-%%a)
For /f "tokens=1-2 delims=/:" %%a in (’time /t’) do (set mytime=%%a%%b)

"C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqldump.exe" -ubackup -pbackup openremdatabasemysql > F:\OpenREMdatabase\backup\%mydate%_%mytime%_openremdatabasemysql.sql

"C:\Program Files\7-Zip\7z.exe" a F:\OpenREMdatabase\backup\%mydate%_%mytime%_openremdatabasemysql.zip F:\OpenREMdatabase\backup\%mydate%_%mytime%_openremdatabasemysql.sql

del F:\OpenREMdatabase\backup\%mydate%_%mytime%_openremdatabasemysql.sql

copy F:\OpenREMdatabase\backup\%mydate%_%mytime%_openremdatabasemysql.zip "\\Srv-mps-001\xls_protect\PATDOSE\OpenREMbackup\"

8 Chapter 1. Installation instructions

CHAPTER 2

Importing data to OpenREM

2.1 Importing dose related data from DICOM files

If you are using linux or have put ‘"C:\Python27\Lib\site-packages\openrem\scripts" and
"C:\Python27\Lib\site-packages\openrem" onto your path, you should be able to import from the com-
mand line:

2.1.1 Radiation Dose Structured Reports

• openrem_rdsr.py filename.dcm

2.1.2 For mammography DICOM images

• openrem_mg.py filename.dcm

The facility for extracting dose information from mammography DICOM images has been designed and tested with
images created with the GE Senographe DS. It has now been tested in a limited fashion with the images generated by
the following systems:

• GE Senographe Essential

• Hologic Selenia

• Siemens Inspiration

See Mammography module for testing restrictions.

2.1.3 For CT dose summary files from Philips CT scanners

• openrem_ctphilips.py filename.dcm

2.2 Importing dose related data from csv files

2.2.1 Patient height and weight information

If height and weight data is not available in the DICOM data, but is available from another source, then it can be
imported into the database using the openrem_ptsizecsv.py function. Normally the key to match the size

9

OpenREM Documentation, Release 0.3.9

information with the studies in the database will be the accession number; however in some situations this isn’t
available and the Study Instance UID can be used instead.

usage: openrem_ptsizecsv.py [-h] [-u] [-v] csvfile id height weight

-h, --help Print the help text.

-u, --si-uid Use Study Instance UID instead of Accession Number.

-v, --verbose New in 0.3.7 Print to the standard output the success or otherwise of inserting each value.

csvfile csv file containing the height and/or weight information and study identifier. Other columns will be ig-
nored. Use quotes if the filepath has spaces.

id Column title for the accession number or study instance UID. Use quotes if the title has spaces.

height Column title for the patient height (DICOM size) - if this information is missing simply add a blank column
with a suitable title. Use quotes if the title has spaces.

weight Column title for the patient weight - if this information is missing simply add a blank column with a suitable
title. Use quotes if the title has spaces.

Changed in version 0.3.7: Verbosity flag added to supress printing to the standard output unless requested.

10 Chapter 2. Importing data to OpenREM

CHAPTER 3

Using the OpenREM interface and export function

3.1 Navigating the OpenREM web interface

Depending on your web server setup, your web interface to OpenREM will usually be at http://yourserver/openrem or
if you are using the test web server then it might be at http://localhost:8000/openrem.

The home page for OpenREM should look something like this when it is populated with studies:

11

http://yourserver/openrem
http://localhost:8000/openrem

OpenREM Documentation, Release 0.3.9

By selecting the links in the navigation bar at the top, you can view all of the CT, fluoroscopy or mammography
studies. Alternatively, if you click on the station name link (in blue) you can filter to just that source modality.

3.2 Filtering for specific studies

This image shows the CT studies view, filtered by entering terms in the boxes on the right hand side to show just the
studies where the modality model name includes the term ‘soma’:

12 Chapter 3. Using the OpenREM interface and export function

OpenREM Documentation, Release 0.3.9

The search fields can all be used on their own or together, and they are all case insensitive ‘contains’ searches.
The exception is the date field, where both from and to have to be filled in (if either are), and the format must be
yyyy-mm-dd. There currently isn’t any more complex filtering available, but it does exist as issue 17 for a future
release.

The last box below the filtering search boxes is the ordering preference.

New in 0.3.8 Ordering by date now takes account of the time of the study (issue 37).

3.3 Viewing study details

By clicking on the study description link (in blue), you can see more details for an individual study:

3.3. Viewing study details 13

https://bitbucket.org/edmcdonagh/openrem/issue/17/
https://bitbucket.org/edmcdonagh/openrem/issue/37

OpenREM Documentation, Release 0.3.9

Not all the details stored for any one study are displayed, just those thought to be most useful. If there are others you’d
like to see, add an issue to the tracker.

The final field in the summary at the top is called ‘Test patient indicators?’ When studies are imported the ID and
patient name fields are both ignored, but they are parsed to check if they have ‘phy’, ‘test’ or ‘qa’ in them to help
exclude them from the data analysis. If they do, then this information is added to the field and is displayed both in
the web interface as a Test patient indicator and in the Excel export. The name and ID themselves are not reproduced,
simply the presence of one of the key words. Therefore a patient named ‘Phyliss’ would trigger this, but only ‘Phy’
would be reproduced in this field. Other fields will also help to confirm whether a study is for a real patient such as
the lack of an Accession Number and an unusual patient age.

3.4 Exporting to csv and xlsx sheets

From any of the modality pages in the OpenREM interface, you can export the displayed studies to a csv spreadsheet
by clicking on the link near the top. In the CT interface, you can also export to an enhanced XLSX spreadsheet.

14 Chapter 3. Using the OpenREM interface and export function

OpenREM Documentation, Release 0.3.9

For CT, the XLSX export has multiple sheets. The first sheet contains a summary of all the study descriptions,
requested procedures and series protocol names contained in the export:

This information is useful for seeing what data is in the spreadsheet, and can also be used to prioritise which studies
or protocols to analyse based on frequency.

The second sheet of the exported file lists all the studies, with each study taking one line and each series in the study
displayed in the columns to the right.

The remainder of the file has one sheet per series protocol name. Each series is listed one per line. If a single study
has more than one series with the same protocol name, then the same study will appear on more than one line.

3.4. Exporting to csv and xlsx sheets 15

OpenREM Documentation, Release 0.3.9

16 Chapter 3. Using the OpenREM interface and export function

CHAPTER 4

Upgrade instructions

4.1 Upgrading from tar.gz package

Note: Make sure you have setup South before you upgrade – see 7. Convert the database to use South for details.

4.1.1 Code upgrade

1. pip install OpenREM-version.tar.gz

4.1.2 Database migration

Always do a database migration using South after an upgrade in case any of the database models have changed. This
will normally not be the case.

1. python path/to/openrem/manage.py schemamigration --auto remapp eg python
lib/python2.7/site-packages/openrem/manage.py schemamigration --auto
remapp

2. If response to the last command is ‘Nothing seems to have changed’, no migration is required. Else, follow the
instructions to migrate.

4.1.3 Restart the web server

1. Restart the web server to enable any changes that have been made to the web interface.

17

OpenREM Documentation, Release 0.3.9

18 Chapter 4. Upgrade instructions

CHAPTER 5

Documentation for the OpenREM code

Contents:

5.1 DICOM import modules

5.1.1 RDSR module

Ultimately this should be the only module required as it deals with all Radiation Dose Structured Reports. Currently
this has only been tested on CT and fluoroscopy structured reports, but it also has the logic for mammography struc-
tured reports if they start to appear.

remapp.extractors.rdsr.rdsr(rdsr_file)
Extract radiation dose related data from DICOM Radiation SR objects.

Parameters filename (str.) – relative or absolute path to Radiation Dose Structured Report.

Tested with:

• CT: Siemens, Philips and GE RDSR, GE Enhanced SR.

• Fluoro: Siemens Artis Zee RDSR

5.1.2 Mammography module

Mammography is interesting in that all the information required for dose audit is contained in the image header,
including patient ‘size’, ie thickness. However the disadvantage over an RSDR is the requirement to process each
individual image rather than a single report for the study, which would also capture any rejected images.

remapp.extractors.mam.mam(mg_file)
Extract radiation dose structured report related data from mammography images

Parameters filename (str.) – relative or absolute path to mammography DICOM image file.

Tested with:

• GE Senographe DS software versions ADS_43.10.1 and ADS_53.10.10 only.

• Limited testing: GE Senographe Essential

• Limited testing: Hologic Selenia

• Limited testing: Siemens Inspiration

19

OpenREM Documentation, Release 0.3.9

5.1.3 CT non-standard modules

Initially only Philips CT dose report images are catered for. These have all the information that could be derived from
the images also held in the DICOM header information, making harvesting relatively easy.

remapp.extractors.ct_philips.ct_philips(philips_file)
Extract radiation dose structured report related data from Philips CT dose report images

Parameters filename (str.) – relative or absolute path to Philips CT dose report DICOM image
file.

Tested with:

• Philips Gemini TF PET-CT v2.3.0

• Brilliance BigBore v3.5.4.17001.

5.2 Non-DICOM import modules

5.2.1 Patient height and weight csv import module

This module enables a csv file to be parsed and the height and weight information extracted and added to existing
studies in the OpenREM database. An example may be a csv extract from a RIS or EPR system.

There needs to be a common unique identifier for the exam - currently this is limited to accession number or study
instance UID.

remapp.extractors.ptsizecsv2db.csv2db(*args, **kwargs)
Import patient height and weight data from csv RIS exports. Can be called from openrem_ptsizecsv.py
script

Parameters

• –si-uid (bool) – Use Study Instance UID instead of Accession Number. Short form -s.

• csvfile (str) – relative or absolute path to csv file

• id (str) – Accession number column header or header if -u or –si-uid is set. Quote if
necessary.

• height (str) – Patient height column header. Create if necessary, quote if necessary.

• weight (str) – Patient weight column header. Create if necessary, quote if necessary.

Example:

openrem_ptsizecsv.py -s MyRISExport.csv StudyInstanceUID HEIGHT weight

5.3 Export from database

5.3.1 Multi-sheet Microsoft Excel XLSX exports

This export has a summary sheet of all the requested and performed protocols and the series protocols. The next sheet
has all studies on, one study per line, with the series stretching off to the right. The remaining sheets are specific to
each series protocol, in alphabetical order, with one series per line. If one study has three series with the same protocol
name, each one has a line of its own.

20 Chapter 5. Documentation for the OpenREM code

OpenREM Documentation, Release 0.3.9

remapp.exports.xlsx.ctxlsx(request)
Export filtered CT database data to multi-sheet Microsoft XSLX files.

Parameters request (HTTP get) – Query parameters from the CT filtered page URL.

5.3.2 Single sheet CSV exports

remapp.exports.exportcsv.exportFL2excel(request)
Export filtered fluoro database data to a single-sheet CSV file.

Parameters request (HTTP get) – Query parameters from the fluoro filtered page URL.

remapp.exports.exportcsv.exportCT2excel(request)
Export filtered CT database data to a single-sheet CSV file.

Parameters request (HTTP get) – Query parameters from the CT filtered page URL.

remapp.exports.exportcsv.exportMG2excel(request)
Export filtered mammography database data to a single-sheet CSV file.

Parameters request (HTTP get) – Query parameters from the mammo filtered page URL.

5.4 Tools and helper modules

5.4.1 OpenREM settings

Administrative module to define the name of the project and to add it to the Python path

remapp.extractors.openrem_settings.name_of_project()
Returns the name of the project. Default OpenREM

remapp.extractors.openrem_settings.add_project_to_path()
Add project to path, assuming this file is within project

5.4.2 Get values

Tiny modules to reduce repetition in the main code when extracting information from DICOM headers using pydicom.

remapp.tools.get_values.get_value_kw(tag, dataset)
Get DICOM value by keyword reference.

Parameters

• keyword (str.) – DICOM keyword, no spaces or plural as per dictionary.

• dataset (dataset) – The DICOM dataset containing the tag.

Returns str. – value

remapp.tools.get_values.get_value_num(tag, dataset)
Get DICOM value by tag group and element number.

Always use get_value_kw by preference for readability. This module can be required when reading private
elements.

Parameters

5.4. Tools and helper modules 21

OpenREM Documentation, Release 0.3.9

• tag (hex) – DICOM group and element number as a single hexadecimal number (prefix
0x).

• dataset (dataset) – The DICOM dataset containing the tag.

Returns str. – value

remapp.tools.get_values.get_seq_code_value(sequence, dataset)
From a DICOM sequence, get the code value.

Parameters

• sequence (DICOM keyword, no spaces or plural as per dictionary.) – DICOM sequence
name.

• dataset (DICOM dataset) – The DICOM dataset containing the sequence.

Returns int. – code value

remapp.tools.get_values.get_seq_code_meaning(sequence, dataset)
From a DICOM sequence, get the code meaning.

Parameters

• sequence (DICOM keyword, no spaces or plural as per dictionary.) – DICOM sequence
name.

• dataset (DICOM dataset) – The DICOM dataset containing the sequence.

Returns str. – code meaning

remapp.tools.get_values.get_or_create_cid(codevalue, codemeaning)
Create a code_value code_meaning pair entry in the Content_item_descriptions table if it doesn’t already exist.

Parameters

• codevalue (int.) – Code value as defined in the DICOM standard part 16

• codemeaning – Code meaning as defined in the DICOM standard part 16

Returns Content_item_descriptions entry for code value passed

5.4.3 Check if UID exists

Small module to check if UID already exists in the database.

remapp.tools.check_uid.check_uid(uid, level=’Study’)
Check if UID already exists in database.

Parameters uid (str.) – Study UID.

Returns 1 if it does exist, 0 otherwise

5.4.4 DICOM time and date values

Module to convert betweeen DICOM and Python dates and times.

remapp.tools.dcmdatetime.get_date(tag, dataset)
Get DICOM date string and return Python date.

Parameters

• tag (str.) – DICOM keyword, no spaces or plural as per dictionary.

22 Chapter 5. Documentation for the OpenREM code

OpenREM Documentation, Release 0.3.9

• dataset (dataset) – The DICOM dataset containing the tag.

Returns Python date value

remapp.tools.dcmdatetime.get_time(tag, dataset)
Get DICOM time string and return Python time.

Parameters

• tag (str.) – DICOM keyword, no spaces or plural as per dictionary.

• dataset (dataset) – The DICOM dataset containing the tag.

Returns python time value

remapp.tools.dcmdatetime.get_date_time(tag, dataset)
Get DICOM date time string and return Python date time.

Parameters

• tag (str.) – DICOM keyword, no spaces or plural as per dictionary.

• dataset (dataset) – The DICOM dataset containing the tag.

Returns Python date time value

remapp.tools.dcmdatetime.make_date(dicomdate)
Given a DICOM date, return a Python date.

Parameters dicomdate (str.) – DICOM style date.

Returns Python date value

remapp.tools.dcmdatetime.make_time(dicomtime)
Given a DICOM time, return a Python time.

Parameters dicomdate (str.) – DICOM style time.

Returns Python time value

remapp.tools.dcmdatetime.make_date_time(dicomdatetime)
Given a DICOM date time, return a Python date time.

Parameters dicomdate (str.) – DICOM style date time.

Returns Python date time value

5.4.5 Test for QA or other non-patient related studies

remapp.tools.not_patient_indicators.get_not_pt(dataset)
Looks for indications that a study might be a test or QA study.

Some values that might indicate a study was for QA or similar purposes are not recorded in the database, for
example patient name. Therefore this module attempts to find such indications and creates an xml style string
that can be recorded in the database.

Parameters dataset (dataset) – The DICOM dataset.

Returns str. – xml style string if any trigger values are found.

5.4. Tools and helper modules 23

OpenREM Documentation, Release 0.3.9

5.5 Models

5.6 Filtering code

5.7 Indices and tables

• genindex

• modindex

• search

Note: OpenREM does not currently include a DICOM Store SCP, ie you will need to install a DICOM store server
in order to send RSDRs or other DICOM files from modalities.

If you have no preference, Conquest is recommended as a free, open source, scriptable DICOM server. Please note
though that you will need to include the RSRD SOP in the dgatesop.lst file.

24 Chapter 5. Documentation for the OpenREM code

http://ingenium.home.xs4all.nl/dicom.html

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

25

OpenREM Documentation, Release 0.3.9

26 Chapter 6. Indices and tables

Python Module Index

c
check_uid., ??
ctphilips., ??

d
dcmdatetime., ??

e
exportcsv., ??

g
get_values., ??

m
mam., ??

n
not_patient_indicators., ??

o
openrem_settings., ??

p
ptsizecsv2db., ??

r
rdsr., ??
remapp.exports.exportcsv, ??
remapp.exports.xlsx, ??
remapp.extractors.ct_philips, ??
remapp.extractors.mam, ??
remapp.extractors.openrem_settings, ??
remapp.extractors.ptsizecsv2db, ??
remapp.extractors.rdsr, ??
remapp.tools.check_uid, ??
remapp.tools.dcmdatetime, ??
remapp.tools.get_values, ??
remapp.tools.not_patient_indicators, ??

x
xlsx., ??

27

