

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	OpenREM 0.7.1 documentation

Welcome to OpenREM’s documentation!

[image: OpenREM logo]
OpenREM is an opensource framework created for the purpose of radiation
exposure monitoring. The software is capable of importing and displaying
data from a wide variety of x-ray dose related sources, and then enables
easy export of the data in a form that is suitable for further analysis
by suitably qualified medical physics personnel.

Please see openrem.org [http://openrem.org] for more details.

Contents:

	First time installation
	Pre-installation preparations

	Installing OpenREM

	Offline Installation on Windows

	Databases

	Upgrade to OpenREM 0.7.1
	Headline changes

	Upgrading an OpenREM server with no internet access

	Upgrading from version 0.6.0

	Upgrading from version 0.7.0 beta 7 or later

	Start all the services
	Test web server

	Celery task queue

	Celery periodic tasks: beat

	Configure the settings

	Start using it!

	Further instructions

	Configuration
	Delete objects configuration

	Viewing and editing individual x-ray system display names using the web interface

	Importing data to OpenREM
	Importing dose related data from DICOM files

	DICOM Store and QR
	DICOM Network Configuration

	Conquest DICOM store node on Ubuntu

	DICOM Query Retrieve Service

	Running Conquest on Windows as a service

	Configuring Conquest DICOM server to automatically forward data to OpenREM

	Patient identifiable data
	Configure what is stored

	Store encrypted data only

	Using patient identifiable data

	Navigating, filtering and study details
	Navigating the OpenREM web interface

	Filtering for specific studies

	Viewing study details

	Charts
	Chart types

	Exporting chart data

	New in 0.7.0

	Chart options

	Chart types - CT

	Chart types - radiography

	Chart types - fluoroscopy

	Chart types - mammography

	Performance notes

	Calculation and display of skin dose maps
	Functionality that will be available

	Skin dose map settings

	Exporting data to openSkin

	Instructions for openSkin

	Limitations

	Exporting study information
	Exporting to csv and xlsx sheets

	OpenREM administration
	Deleting studies

	Adding patient size information from csv using the web interface

	Adding patient size information from csv using the command line

	Troubleshooting
	Server 500 errors

	Query-retrieve issues

	OpenREM DICOM storage nodes

	Log files

	Documentation for the OpenREM code
	DICOM import modules

	Non-DICOM import modules

	Export from database

	Tools and helper modules

	Models

	Filtering code

	Views

	Export Views

	Forms

	DICOM networking modules

	Adding new charts

	Indices and tables

	Previous Release Notes and Change Log
	Version history change log

	Release notes and upgrade instructions

	Contributing authors

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

First time installation

	Pre-installation preparations
	Install Python 2.7.x and pip

	Install RabbitMQ

	Install NumPy

	Install pynetdicom (edited version)

	Install PostgreSQL database

	Install OpenREM

	Further instructions

	Installing OpenREM
	Install OpenREM 0.7

	Configuration

	Start all the services!

	Further instructions

A standard installation assumes access to the internet from the computer where OpenREM is being installed. Sometimes
this isn’t possible, so we’ve added instructions for an offline installation too. Currently it focuses on Windows only
(for the server - the computer connected to the internet can be running any operating system).

	Offline Installation on Windows
	On a computer with internet access

	On the Windows server without internet access

	Configure OpenREM ready for use

Databases

During the installation process, you will need to install a database. For testing only, you can use the built in
SQLite3 database, but for production use you will need a production grade database. This is covered in the
Pre-installation preparations documentation, but as you will probably want to find the database instructions again, the links
are repeated here.

	PostgreSQL database (Linux)
	Creating the database

	Backup the database

	Restore the database

	Alternative instructions and further reference

	Useful PostgreSQL commands

	PostgreSQL database (Windows)
	Get PostgreSQL and the python connector

	Install PostgreSQL

	Create a user and database

	Install psycopg2

	Configure OpenREM to use the database

	Backing up MySQL on Windows

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	First time installation

Pre-installation preparations

Install Python 2.7.x and pip

	Linux – likely to be installed already

	Windows – instructions and downloads are available at python.org [https://www.python.org/downloads]

Add Python and the scripts folder to the path

Windows only – this is usually automatic in linux

During the Windows Python 2.7 installation, ‘install’ Add Python.exe to Path:

[image: Add Python to Path image]
Python installation customisation dialogue

If Python is already installed, you can add Python to Path yourself:

Add the following to the end of the path environment variable (to see
how to edit the environment variables, see http://www.computerhope.com/issues/ch000549.htm):

;C:\Python27\;C:\Python27\Scripts\

Setuptools and pip

Install setuptools and pip – for details go to
http://www.pip-installer.org/en/latest/installing.html. The quick version
is as follows:

Linux

Download the latest version using the same method as for Windows, or
get the version in your package manager, for example:

sudo apt-get install python-pip

Windows

Pip is normally installed with Python. If it hasn’t been, download the installer script
get-pip.py [https://bootstrap.pypa.io/get-pip.py]
and save it locally – right click and Save link as... or equivalent.

Open a command window (Start menu, cmd.exe) and navigate to the place
you saved the get‑pip.py file:

python get-pip.py

Quick check of python and pip

To check everything is installed correctly so far, type the following in a
command window/shell. You should have the version number of pip returned to
you:

pip -V

Install RabbitMQ

	Linux - Follow the guide at http://www.rabbitmq.com/install-debian.html

	Windows - Follow the guide at http://www.rabbitmq.com/install-windows.html

For either install, just follow the defaults – no special configurations required.

Note

Before continuing, consider virtualenv

Install NumPy

Numpy is required for charts. OpenREM will work without NumPy, but charts will not be displayed.

For linux:

sudo apt-get install python-numpy
If using a virtualenv, you might need to also do:
pip install numpy

For Windows:

Download NumPy from http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy

	Find the right version - look for numpy-x.xx.x+mkl-cp27-cp27m-win32.whl for 32-bit Windows or

	numpy-x.xx.x+mkl-cp27-cp27m-win_amd64.whl for 64-bit Windows.

	At the time of writing, x.xx.x was 1.11.0 - choose the latest version

	Install using pip:

pip install numpy‑1.11.0+mkl‑cp27-cp27m‑win32.whl
or
pip install numpy‑1.11.0+mkl‑cp27‑cp27m‑win_amd64.whl
changing the filename appropriately

Install pynetdicom (edited version)

Pynetdicom is used for the DICOM Store SCP and Query Retrieve SCU functions. See DICOM Store and QR for details.

pip install https://bitbucket.org/edmcdonagh/pynetdicom/get/default.tar.gz#egg=pynetdicom-0.8.2b2

Install PostgreSQL database

For production use, you will need to install and configure a database. We strongly recommend PostgreSQL, but you can
use any of the databases listed on the Django website [https://docs.djangoproject.com/en/1.8/ref/databases/] such
as MySQL, Oracle or MS SQL Server, with the limitations listed there. There is one additional limitation - the
calculation of median values for charts in OpenREM is dependent on using PostgreSQL.

If this is your first time installing OpenREM and you just want to test it out, you can skip this step and make use
of the in-built SQLite database. However, you should expect to start again when you move to a production grade database.

	PostgreSQL database (Linux)

	PostgreSQL database (Windows)

Install OpenREM

You are now ready to install OpenREM, so go to the Installing OpenREM docs.

Further instructions

Virtualenv and virtualenvwrapper

If the server is to be used for more than one python application, or you
wish to be able to test different versions of OpenREM or do any development,
it is highly recommended that you use virtualenv [https://pypi.python.org/pypi/virtualenv] or maybe virtualenvwrapper [http://virtualenvwrapper.readthedocs.org/en/latest/]

Virtualenv sets up an isolated python environment and is relatively easy to use.

If you do use virtualenv, all the paths referred to in the documentation will
be changed to:

	Linux: lib/python2.7/site-packages/openrem/

	Windows: Lib\site-packages\openrem

In Windows, even when the virtualenv is activated you will need to call python
and provide the full path to script in the Scripts folder. If you call the
script (such as openrem_rdsr.py) without prefixing it with python, the
system wide Python will be used instead. This doesn’t apply to Linux, where
once activated, the scripts can be called without a python prefix from anywhere.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	First time installation

Installing OpenREM

Install OpenREM 0.7

pip install openrem==0.7.1

Will need ``sudo`` or equivalent if installing on linux without using a virtualenv

Configuration

Locate install location

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/

	Other linux: /usr/lib/python2.7/site-packages/openrem/

	Linux virtualenv: lib/python2.7/site-packages/openrem/

	Windows: C:\Python27\Lib\site-packages\openrem\

	Windows virtualenv: Lib\site-packages\openrem\

There are two files that need renaming:

	openremproject/local_settings.py.example to openremproject/local_settings.py

	openremproject/wsgi.py.example to openremproject/wsgi.py

Edit local_settings.py

Note

Windows notepad will not recognise the Unix style line endings.
Please use an editor such as Notepad++ or Notepad2 if you can, else use WordPad –
on the View tab you may wish to set the Word wrap to ‘No wrap’

Important

In local_settings.py, always use forward slashes and not backslashes, even for paths on
Windows systems.

The directories in this local_settings.py file must already exist - OpenREM will not create them for you.

Database

Note

SQLite is great for getting things running quickly and testing if the setup works,
but is not recommended for production use.

We recommend using PostgreSQL [http://www.postgresql.org] as it is the best supported
database for Django, and the only one for which the median value will be calculated and
displayed in OpenREM charts. Alternatively, other databases such as MySQL/MariaDB, Oracle, and
some others with lower levels of support can be used.

There are some further guides to setting up PostgreSQL – see Databases

If you are using SQLite:

'ENGINE': 'django.db.backends.sqlite3',
'NAME': '/ENTER/PATH/WHERE/DB/FILE/CAN/GO',

	Linux example: 'NAME': '/home/user/openrem/openrem.db',

	Windows example: 'NAME': 'C:/Users/myusername/Documents/OpenREM/openrem.db',

If you are using PostgreSQL:

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'openremdb',
'USER': 'openremuser',
'PASSWORD': 'openrem_pw',

Location for imports and exports

Csv and xlsx study information exports and patient size csv imports are
written to disk at a location defined by MEDIA_ROOT.

The path set for MEDIA_ROOT is up to you, but the user that runs the
webserver must have read/write access to the location specified because
it is the webserver than reads and writes the files. In a debian linux,
this is likely to be www-data for a production install. Remember to use
forward slashes for the config file, even for Windows.

Linux example:

MEDIA_ROOT = "/var/openrem/media/"

Windows example:

MEDIA_ROOT = "C:/Users/myusername/Documents/OpenREM/media/"

Secret key

Generate a new secret key and replace the one in the local_settings.py file. You can use
http://www.miniwebtool.com/django-secret-key-generator/ for this.

Allowed hosts

The ALLOWED_HOSTS needs to be defined, as the DEBUG mode is now
set to False. This needs to contain the server name or IP address that
will be used in the URL in the web browser. For example:

ALLOWED_HOSTS = [
 '192.168.56.102',
 '.doseserver.',
 'localhost',
]

A dot before a hostname allows for subdomains (eg www.doseserver), a dot
after a hostname allows for FQDNs (eg doseserver.ad.trust.nhs.uk).
Alternatively, a single '*' allows any host, but removes the security
the feature gives you.

Log file

There are two places logfiles need to be configured - here and when starting Celery. The logs defined here capture
most of the information; the Celery logs just capture workers starting and tasks starting and finishing.

Configure the filename to determine where the logs are written. In linux, you might want to send them to a sub-folder of
/var/log/. In this example, they are written to the MEDIA_ROOT; change as appropriate:

import os
logfilename = os.path.join(MEDIA_ROOT, "openrem.log")
qrfilename = os.path.join(MEDIA_ROOT, "openrem_qr.log")
storefilename = os.path.join(MEDIA_ROOT, "openrem_store.log")
LOGGING['handlers']['file']['filename'] = logfilename # General logs
LOGGING['handlers']['qr_file']['filename'] = qrfilename # Query Retrieve SCU logs
LOGGING['handlers']['store_file']['filename'] = storefilename # Store SCP logs

If you want all the logs in one file, simply set them all to the same filename.

In the settings file, there are simple and verbose log message styles. We recommend you leave these as
verbose:

LOGGING['handlers']['file']['formatter'] = 'verbose' # General logs
LOGGING['handlers']['qr_file']['formatter'] = 'verbose' # Query Retrieve SCU logs
LOGGING['handlers']['store_file']['formatter'] = 'verbose' # Store SCP logs

Finally you can set the logging level. Options are DEBUG, INFO, WARNING, ERROR, and CRITICAL, with
progressively less logging.

LOGGING['loggers']['remapp']['level'] = 'INFO' # General logs
LOGGING['loggers']['remapp.netdicom.qrscu']['level'] = 'INFO' # Query Retrieve SCU logs
LOGGING['loggers']['remapp.netdicom.storescp']['level'] = 'INFO' # Store SCP logs

Create the database

In a shell/command window, move into the openrem folder:

	Ubuntu linux: cd /usr/local/lib/python2.7/dist-packages/openrem/

	Other linux: cd /usr/lib/python2.7/site-packages/openrem/

	Windows: cd C:\Python27\Lib\site-packages\openrem\

	Virtualenv: cd lib/python2.7/site-packages/openrem/

Create the database:

python manage.py makemigrations remapp
python manage.py migrate
python manage.py showmigrations

The last command will list each Django app migrations. Each should have a cross inside
a pair of square brackets something like below:

admin
 [X] 0001_initial
auth
 [X] 0001_initial
 [X] 0002_alter_permission_name_max_length
 [X] 0003_alter_user_email_max_length
 [X] 0004_alter_user_username_opts
 [X] 0005_alter_user_last_login_null
 [X] 0006_require_contenttypes_0002
contenttypes
 [X] 0001_initial
 [X] 0002_remove_content_type_name
remapp
 [X] 0001_initial
sessions
 [X] 0001_initial
sites
 [X] 0001_initial

Finally, create a Django super user:

python manage.py createsuperuser

Answer each question as it is asked – this user is needed to set up the other users and the
permissions.

Add the median database function: PostgreSQL databases only

Rename the file

remapp/migrations/0002_0_7_fresh_install_add_median.py.inactive

to

remapp/migrations/0002_0_7_fresh_install_add_median.py

and then run

python manage.py makemigrations --empty remapp
python manage.py migrate

The first command will create a skeleton 0001_initial.py migration file. The
second command runs the migration files, and will display the text
Applying remapp.0002_0_7_fresh_install_add_median... OK, indicating that the median function has been added.

Start all the services!

You are now ready to start the services to allow you to use OpenREM - go to Start all the services to see how!

Further instructions

Production webservers

Unlike the database, the production webserver can be left till later and
can be changed again at any time.

For performance it is recommended that a production webserver is used instead of the inbuilt ‘runserver’.
Popular choices would be either Apache [http://httpd.apache.org] or you can do as the cool kids
do and use Gunicorn with nginx [http://www.robgolding.com/blog/2011/11/12/django-in-production-part-1—the-stack/].

The django website [https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/modwsgi/]
has instructions and links to get you set up with Apache.

An advanced guide using Apache, including auto-restarting the server when the code changes, has been contributed
here: Installing Apache on Windows Server 2012 with auto-restart

DICOM Store and query-retrieve

The best (and only practical way in a production environment) to get DICOM data into OpenREM is to have a DICOM store
node (Store Service Class Provider/SCP) and possibly a query-retrieve service class user too.

To find out more about this, refer to the DICOM Store and QR docs.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	First time installation

Offline Installation on Windows

In order to carry out an offline installation you will need to download the OpenREM package and dependencies.
The instructions below should work for downloading on any operating system, as long as you have Python 2.7 and a
reasonably up to date version of pip installed.

If you have trouble when installing the Python packages due to incorrect architecture, you may need to either download
on a Windows system similar to the server (matching 32-bit/64-bit), or to download the files from
http://www.lfd.uci.edu/~gohlke/pythonlibs/ instead.

On a computer with internet access

Download independent binaries

Python from https://www.python.org/downloads/windows/

	Follow the link to the ‘Latest Python 2 release’

	Download either the Windows x86 MSI installer for 32-bit Windows or

	Download Windows x86-64 MSI installer for 64-bit Windows

Erlang from https://www.erlang.org/downloads

	Download the latest version of Erlang/OTP. Again, choose between

	Windows 32-bit Binary File or

	Windows 64-bit Binary File

RabbitMQ from http://www.rabbitmq.com/install-windows.html

	Download rabbitmq-server-x.x.x.exe from either option

PostgreSQL from http://www.enterprisedb.com/products-services-training/pgdownload#windows

Note: Other databases such as MySQL are also suitable, though the median function for charts will not be available. For
testing purposes only, you could skip this step and use SQLite3 which comes with OpenREM

	Download by clicking on the icon for Win x86-32 or Win x86-64

PostgreSQL Python connector from http://www.lfd.uci.edu/~gohlke/pythonlibs/#psycopg

	Find the right version - look for psycopg2-x.x.x-cp27-cp27m-win32.whl for 32-bit Windows or

	psycopg2-x.x.x-cp27-cp27m-win_amd64.whl for 64-it Windows.

	At the time of writing, x.x.x was 2.6.1 - choose the latest cp27 version

NumPy from http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy

	Find the right version - look for numpy-x.xx.x+mkl-cp27-cp27m-win32.whl for 32-bit Windows or

	numpy-x.xx.x+mkl-cp27-cp27m-win_amd64.whl for 64-bit Windows.

	At the time of writing, x.xx.x was 1.11.0 - choose the latest cp27 version

Pynetdicom from https://bitbucket.org/edmcdonagh/pynetdicom/get/default.tar.gz#egg=pynetdicom-0.8.2b2

	The downloaded file will be named something like edmcdonagh-pynetdicom-2da8a57b53b3.tar.gz

	Note: this version is modified in comparison to the version in PyPI

A webserver such as Apache, although this can be left till later - you can get started with the built-in web
server

Download python packages from PyPI

In a console, navigate to a suitable place and create a directory to collect all the packages in, then use pip to
download them all:

mkdir openremfiles
pip install -d openremfiles openrem==0.7.1

Copy everything to the Windows machine

	Add the pynetdicom file, the psycopg2 file and the numpy file to the directory with the other python
packages

	Copy this directory plus all the binaries to the Windows server that you are using

On the Windows server without internet access

Installation of binaries

Install the binaries in the following order:

	Python

	Erlang

	RabbitMQ

Installation of the python packages

In a console, navigate to the directory that your openremfiles directory is in, and

pip install openremfiles\numpy‑1.11.0+mkl‑cp27-cp27m‑win32.whl
or if you have the 64 bit version
pip install openremfiles\numpy‑1.11.0+mkl‑cp27-cp27m‑win_amd64.whl
adjusting the version number appropriately

pip install --no-index --find-links=openremfiles openrem==0.7.1

pip install openremfiles\edmcdonagh-pynetdicom-2da8a57b53b3.tar.gz

Install PostgreSQL

See the instructions to Install PostgreSQL on Windows.

Install webserver

If you are doing so at this stage.

Configure OpenREM ready for use

OpenREM is now installed, so go straight to the Configuration section of the standard installation docs

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	First time installation

PostgreSQL database (Linux)

Creating the database

Install PostgreSQL and the python connector

sudo apt-get install postgresql libpq-dev

If you are using a virtualenv, make sure you are in it and it is active (source bin/activate)

pip install psycopg2

Change the security configuration

The default security settings are too restrictive to allow access to the database. Assumes version 9.4, change as
appropriate.

sudo nano /etc/postgresql/9.4/main/pg_hba.conf

Scroll down to the bottom of the file and edit the following line from peer to md5:

local all all md5

Don’t worry about any lines that start with a # as they are ignored. If you can’t access the database when
everything else is configured, you might need to revisit this file and see if there are other lines with a method of
peer that need to be md5

Restart PostgreSQL so the new settings take effect:

sudo service postgresql restart

Optional: Specify the location for the database files

You might like to do this if you want to put the database on an encrypted location instead of /var/lib/postgresql.

For this example, I’m going to assume all the OpenREM programs and data are in the folder /var/openrem/ and
PostgreSQL is at version 9.4 (change both as appropriate)

sudo service postgresql stop
mkdir /var/openrem/database
sudo cp -aRv /var/lib/postgresql/9.4/main /var/openrem/database/
sudo nano /etc/postgresql/9.4/main/postgresql.conf

Change the line

data_directory = '/var/lib/postgresql/9.4/main'

to

data_directory = '/var/openrem/database/main'

then restart PostgreSQL:

sudo service postgresql start

Create a user for the OpenREM database

sudo -u postgres createuser -P openremuser

Enter a new password for the openremuser, twice

Create the OpenREM database

sudo -u postgres createdb -T template1 -O openremuser -E 'UTF8' openremdb

If this is your initial install, you are now ready to install OpenREM, so go to the Installing OpenREM docs.

If you are replacing a SQLite test install with PostgreSQL, continue here.

Configure OpenREM to use the database

Move to the OpenREM install directory:

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/

	Other linux: /usr/lib/python2.7/site-packages/openrem/

	Linux virtualenv: lib/python2.7/site-packages/openrem/

	Windows: C:\Python27\Lib\site-packages\openrem\

	Windows virtualenv: Lib\site-packages\openrem\

Edit the settings file, eg

nano openremproject/local_settings.py

Set the following (changing database name, user and password as appropriate)

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'openremdb',
'USER': 'openremuser',
'PASSWORD': 'openrem_pw',

Backup the database

Ad-hoc backup from the command line

sudo -u postgres pg_dump openremdb > /path/to/backup.bak

If you are moving a backup file between systems, or keeping a few backups, you may like to compress the backup; for
example a 345 MB OpenREM database compresses to 40 MB:

tar -czf backup.bak.tar.gz backup.bak

Automated backup with a bash script

#! /bin/bash
rm -rf /path/to/db/backups/*
PGPASSWORD="openrem_pw" /usr/bin/pg_dump -Uopenremuser openremdb > /path/to/db/backups/openrem.bak

This script could be called by a cron task, or by a backup system such as backuppc prior to running the system backup.

Restore the database

If the restore is taking place on a different system, ensure that PostgreSQL is installed and the same user has been
added as was used to create the initial database (see Creating the database)

Create a fresh database and restore from the backup

sudo -u postgres createdb -T template0 new_openremdb_name
sudo -u postgres psql new_openremdb_name < /path/to/db/backups/openrem.bak

Alternative instructions and further reference

Previous versions had instructions that used different backup options and the pg_restore command. To review these,
please refer to the 0.6.2 documentation at
docs.openrem.org/en/0.6.2/ [http://docs.openrem.org/en/0.6.2/backupRestorePostgreSQL.html]

Further details can be found on the
PostgreSQL website [http://www.postgresql.org/docs/9.4/static/backup-dump.html#BACKUP-DUMP-RESTORE]

Useful PostgreSQL commands

-- Start the PostgreSQL console
sudo -u postgres psql

-- List users
\du

-- List databases
\l

-- Exit the console
\q

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	First time installation

PostgreSQL database (Windows)

Note

Original author JA Cole

Get PostgreSQL and the python connector

	Download the installer from http://www.enterprisedb.com/products-services-training/pgdownload#windows

	Download psycopg2 from http://www.lfd.uci.edu/~gohlke/pythonlibs/. Make sure it matches your python and Windows version.

Install PostgreSQL

Run the the postgresql installer. It will ask for a location. Ensure the “data” directory is not under “Program Files”
as this can cause permissions errors. Enter a superuser password when prompted. Make sure you keep this safe as you will
need it.

Create a user and database

Open pgAdmin III

	Click on servers to expand

	Double click on PostgreSQL 9.4

	Enter your superuser password

	Right click on “login roles” and choose “New login role”

	Create the openremuser (or whatever you want your user to be called) and under definition add a password.

	Click OK

	Right click on databases and choose “New database”

	Name the database (openremdb is fine) and assign the the owner to the user you just created.

Install psycopg2

pip install psycopg2-2.6.1-cp27-cp27m-win32.whl
or if you have the 64-bit version
pip install psycopg2-2.6.1-cp27-cp27m-win_amd64.whl
adjusting the version number appropriately

If this is your initial install, you are now ready to install OpenREM, so go to the Installing OpenREM docs.

If you are replacing a SQLite test install with PostgreSQL, continue here.

Configure OpenREM to use the database

	Find and edit the settings file (notepad works fine). The path depends on your python install, but could be something like:

	
	C:\lib\python2.7\site-packages\openrem\openremproject\local_settings.py

	Set the following (changing name, user and password as appropriate):

	
	'ENGINE': 'django.db.backends.postgresql_psycopg2',

	'NAME': 'openrem_db',

	'USER': 'openremuser',

	'PASSWORD': 'openrem_pw',

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	First time installation

Backing up MySQL on Windows

Note

Content contributed by DJ Platten

These instructions are based on Windows XP.

As a one-off, create a MySQL user called backup with a password of backup that has full rights to the database:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -u root -p -e "CREATE USER 'backup'@'localhost' IDENTIFIED BY 'backup'";

Grant the backup user full privileges on the database called openremdatabasemysql:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -u root -p -e "GRANT ALL PRIVILEGES ON openremdatabasemysql .* TO 'backup'@'localhost'";

Grant the backup user privileges to create databases:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -u root -p -e "GRANT CREATE ON *.* TO 'backup'@'localhost'";

Reload the privileges to ensure that MySQL registers the new ones:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -u root -p -e "FLUSH PRIVILEGES";

To backup the contents of the database from the command line to a file called backup.sql (note that the lack of spaces after the -u and -p is not a typo):

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqldump.exe -ubackup -pbackup openremdatabasemysql > backup.sql

To restore the database, assuming that it doesn’t exist anymore, first it needs to be created:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -ubackup -pbackup -e "CREATE DATABASE openremdatabasemysql";

Then restore the contents of the database from a file called backup.sql:

C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql.exe -ubackup -pbackup openremdatabasemysql < backup.sql

An example DOS batch file to back up the contents of the openremdatabasemysql database using a time stamp of the form yyyy-mm-dd_hhmm, zip up the resulting file, delete the uncompressed version and then copy it to a network location (the network copy will only work if the user that runs the batch file has permission on the
network):

@echo off
For /f "tokens=1-4 delims=/ " %%a in ('date /t') do (set mydate=%%c-%%b-%%a)
For /f "tokens=1-2 delims=/:" %%a in ('time /t') do (set mytime=%%a%%b)

"C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqldump.exe" -ubackup -pbackup openremdatabasemysql > F:\OpenREMdatabase\backup\%mydate%_%mytime%_openremdatabasemysql.sql

"C:\Program Files\7-Zip\7z.exe" a F:\OpenREMdatabase\backup\%mydate%_%mytime%_openremdatabasemysql.zip F:\OpenREMdatabase\backup\%mydate%_%mytime%_openremdatabasemysql.sql

del F:\OpenREMdatabase\backup\%mydate%_%mytime%_openremdatabasemysql.sql

copy F:\OpenREMdatabase\backup\%mydate%_%mytime%_openremdatabasemysql.zip "\\Srv-mps-001\xls_protect\PATDOSE\OpenREMbackup\"

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Upgrade to OpenREM 0.7.1

Headline changes

	System

	Django upgraded to version 1.8

	Median function added to the database if using PostgreSQL

	New user-defined display name for each unique system so that rooms with the same DICOM station name are displayed separately

	Patient name and ID can optionally be stored in system, available for searching and export, but not displayed

	Patient name, ID and accession number can be stored as a one-way hash, and remain searchable

	Permission system has become more granular

	System can now accept non-ASCII characters in protocol names etc

	Menus have been tidied up

	Settings file has been updated

	Charts and interface

	Bar chart data points sorted by frequency, value or name in ascending or descending order

	CT chart of DLP per requested procedure type

	CT chart of requested procedure frequency

	CT chart of CTDIvol per study description

	Chart data returned using AJAX to make pages more responsive

	Chart plotting options available via Config menu

	Charts can now be made full-screen

	CTDIw phantom size is displayed with the CTDIvol measurement on the CT study detail page

	Charts show a series called “Blank” when the series name is None

	Queries for chart data now faster in most situations

	Histograms can be disabled or enabled for bar charts

	User-specified number of histogram bins from 2 to 40

	Mammography chart of average glandular dose vs. compressed thickness

	Mammography chart showing the number of studies carried out per weekday

	Fluoroscopy chart of average DAP for each study description

	Fluoroscopy chart of the frequency of each study description

	Fluoroscopy chart showing the number of studies carried out per weekday

	Context specific documentation has been added to the Docs menu

	DICOM Networking

	Query retrieve function is now built in to query PACS systems or modalities via the Import menu

	Configuring and running DICOM Store SCP is available and managed in the web interface, but not recommended

	Documentation improved

	Imports

	Mammography RDSRs import correctly

	Mammography imports from images now create an accumulated AGD value per breast

	GE Senographe DS compression now recorded correctly in Newtons for new imports

	Philips Allura fluoroscopy RDSRs import correctly, including calculating the exposure time

	Bi-plane fluoroscopy imports can now be displayed in the web interface

	Patient height imports from csv now convert from cm to m - previously height was assumed to be cm and inserted
into database without change. Existing height data will remain as cm value for csv imports, and m value for RDSR
imports

	Better handling of non-ASCII characters

	Tube current is now extracted from Siemens Intevo RDSRs

	Exports

	Patient sex is included in all exports

	Filters generated by navigating through charts can now be used to filter export data

	Study description and laterality are now included in mammography exports

	Bi-fluoroscopy studies can be exported

	Skin dose maps

	Skin dose maps have been withdrawn from OpenREM version 0.7.0 due to incorrect orientation calculations that need
to be fixed before openSkin can be reimplemented into OpenREM

Changes since 0.7.0

Extremely minor change to the documenation links

Upgrading an OpenREM server with no internet access

	Upgrade an offline OpenREM installation

Upgrading from version 0.6.0

	Back up your database

	For PostgreSQL you can refer to Backup the database

	For a non-production SQLite3 database, simply make a copy of the database file

	Stop any Celery workers

	The 0.7.0 upgrade must be made from a 0.6.0 (or later) database, and a schema migration is required:

pip install openrem==0.7.1

In a shell/command window, move into the openrem folder:

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/

	Other linux: /usr/lib/python2.7/site-packages/openrem/

	Linux virtualenv: lib/python2.7/site-packages/openrem/

	Windows: C:\Python27\Lib\site-packages\openrem\

	Windows virtualenv: Lib\site-packages\openrem\

Delete all numbered migration files in openrem’s remapp/migrations folder, leaving the 0002 files ending in .inactive

	If there is no file named __init__.py in the remapp/migrations folder, please create it.

	If you have accidentally deleted the 0002 files ending in .inactive, you can get a new copy from
the bitbucket repository [https://bitbucket.org/openrem/openrem/src/008ec3c2e7ffee89355c10fda39a6293b79fa89f/stuff/0002_upgrade_0_7_from_0_6.py.inactive?at=develop].

python manage.py migrate --fake-initial
python manage.py makemigrations remapp
python manage.py migrate remapp --fake

Now rename the file

remapp/migrations/0002_upgrade_0_7_from_0_6.py.inactive

to:

remapp/migrations/0002_upgrade_0_7_from_0_6.py

and then run

python manage.py migrate remapp

Note

With a large database, this may take some time!

	Review the new openremproject/local_settings.py.example file and copy accross the logging section. Then see
Log file settings in the install docs.

If you are using PuTTY on Windows to interact with a linux server, you can select the logging configuration section
of the example file with your mouse, and it will be automatically copied to the clipboard. Then open the existing
local_settings.py file with nano, move the curser down to the bottom and click the right mouse button to paste.

Restart all the services!

Some of the commands and services have changed - follow the guide at Start all the services.

Upgrading from version 0.7.0 beta 7 or later

	Stop any Celery workers

	You will need to do a database migration.

pip install openrem==0.7.1

From the openrem folder (see above):

python manage.py makemigrations remapp
python manage.py migrate remapp

	Review the new local_settings.py.example file and copy accross the logging section. Then see
Log file settings in the install docs.

Restart all the services!

Some of the commands and services have changed - follow the guide at Start all the services.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Upgrade to OpenREM 0.7.1

Upgrade an offline OpenREM installation

Upgrading from OpenREM version 0.6 or later requires new Python packages to be available, as well as the latest
version of OpenREM. These can be downloaded on any computer with Python 2.7 installed and an internet connection,
though if you have trouble when installing the packages you might need to use a similar computer to the one you are
installing on - same operating system and matching 32-bit or 64-bit.

On a computer with internet access

In a console, navigate to a suitable place and create a directory to collect all the packages in, then use pip to
download them all:

mkdir openremfiles
pip install -d openremfiles openrem==0.7.1

Copy everything to the OpenREM server

	Copy the directory to the OpenREM server

On the OpenREM server without internet access

	Back up your database

	For PostgreSQL you can refer to Backup the database

	For a non-production SQLite3 database, simply make a copy of the database file

	Stop any Celery workers

	If you are using a virtualenv, activate it now, then

pip install --no-index --find-links=openremfiles openrem==0.7.1

Now continue with Upgrading from version 0.6.0 or Upgrading from version 0.7.0 beta 7 or later as appropriate, starting just after the pip
install line.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Start all the services

Test web server

In a shell/command window, move into the openrem folder:

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/

	Other linux: /usr/lib/python2.7/site-packages/openrem/

	Linux virtualenv: lib/python2.7/site-packages/openrem/ (remember to activate the virtualenv)

	Windows: C:\Python27\Lib\site-packages\openrem\

	Windows virtualenv: Lib\site-packages\openrem\ (remember to activate the virtualenv)

Web access on OpenREM server only

Run the built in web server:

python manage.py runserver --insecure

In a web browser on the same computer, go to http://localhost:8000/ - you should now see the message about creating
users. For full functionality start the Celery task queue before moving on to Configure the settings.

Web access on other computers

The built-in webserver only provides a service on the computer OpenREM is installed on by default (it’s only there
really for testing). To view the OpenREM interface on another computer, you need to modify the runserver command:

python manage.py runserver --insecure 192.168.1.10:8000

Make sure you change the IP address to the address of the server! On Windows you can find the IP address information
by typing

ipconfig

You are looking for a line that has IPv4 Address followed by four numbers with dots between, similar to the
numbers before the colon in the command above.

With a linux server, type

ip add

Again you are looking for the same dotted number, this time it will be after inet. In both examples, you might
have several to choose from depending on how many network cards (real or virtual) your computer has. Determining
which one is which is probably beyond the scope of these instructions! If you get the IP address completely wrong,
the command will fail with the error: Error: That IP address can't be assigned-to.

In a web browser on a different computer on the same network, go to http://192.168.1.10:8000/ (changing the IP address
to the one you are running the server on) and you should see the OpenREM interface and the message about creating users.
For full functionality start the Celery task queue before moving on to Configure the settings.

Note

Why are we using the --insecure option? With DEBUG mode set to True
the test web server would serve up the static files. In this release,
DEBUG mode is set to False, which prevents the test web server
serving those files. The --insecure option allows them to be served again.

Celery task queue

Celery will have been automatically installed with OpenREM, and along with
RabbitMQ allows for asynchronous task processing for imports, exports and DICOM networking tasks.

Note

Celery needs to be able to write to the place where the Celery logs and pid file are to be stored, so make sure:

	the folder exists (the suggestion below is to create a folder in the MEDIA_ROOT location)

	the user that starts Celery can write to that folder

You can put the folder wherever you like, for example you might like to create a /var/log/openrem/ folder on a linux
system.

If you are using the built-in Test web server then Celery and the webserver will be running as your user. If you are
running a production webserver, such as Apache or nginx on linux, then the user that runs those daemons will need to
be able to write to the MEDIA_ROOT and the Celery log files folder. In this case, you need to change the ownership
of the folders and change to the right user before running Celery. On Ubuntu:

mkdir /path/to/media/celery # change as appropriate
sudo chown www-data /path/to/media # change as appropriate
sudo su -p www-data

Now start celery...

Move into the openrem folder:

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/

	Other linux: /usr/lib/python2.7/site-packages/openrem/

	Linux virtualenv: lib/python2.7/site-packages/openrem/ (remember to activate the virtualenv)

	Windows: C:\Python27\Lib\site-packages\openrem\

	Windows virtualenv: Lib\site-packages\openrem\ (remember to activate the virtualenv)

Linux - \ is the line continuation character:

celery multi start default -A openremproject -c 4 -Q default \
--pidfile=/path/to/media/celery/%N.pid --logfile=/path/to/media/celery/%N.log

Windows - celery multi doesn’t work on Windows, and ^ is the continuation character:

celery worker -n default -A openremproject -c 4 -Q default ^
--pidfile=C:\path\to\media\celery\default.pid --logfile=C:\path\to\media\celery\default.log

For production use, see Daemonising Celery below

Set the number of workers (concurrency, -c) as you see fit. The more you have, the more processes (imports, exports,
query-retrieve operations etc) can take place simultaneously. However, each extra worker uses extra memory and if you
have too many they will be competing for CPU resources too.

To stop the celery queues in Linux:

celery multi stop stores default --pidfile=/path/to/media/celery/%N.pid

For Windows, just press Ctrl+c

You will need to do this twice if there are running tasks you wish to kill.

Celery periodic tasks: beat

Note

Celery beat is only required if you are using the Native DICOM store node with direct import. Please read the warnings there before deciding
if you need to run Celery beat. At the current time, using a third party DICOM store service is recommended for
most users. See the DICOM Store and QR documentation for more details

Celery beat is a scheduler. If it is running, then every 60 seconds a task is run to check if any of the DICOM
Store SCP nodes are set to keep_alive, and if they are, it tries to verify they are running with a DICOM echo.
If this is not successful, then the Store SCP is started.

To run celery beat, open a new shell and move into the openrem folder:

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/

	Other linux: /usr/lib/python2.7/site-packages/openrem/

	Linux virtualenv: lib/python2.7/site-packages/openrem/ (remember to activate the virtualenv)

	Windows: C:\Python27\Lib\site-packages\openrem\

	Windows virtualenv: Lib\site-packages\openrem\ (remember to activate the virtualenv)

Linux:

celery -A openremproject beat -s /path/to/media/celery/celerybeat-schedule \
-f /path/to/media/celery/celerybeat.log \
--pidfile=/path/to/media/celery/celerybeat.pid

Windows:

celery -A openremproject beat -s C:\path\to\media\celery\celerybeat-schedule ^
-f C:\path\to\media\celery\celerybeat.log ^
--pidfile=C:\path\to\media\celery\celerybeat.pid

For production use, see Daemonising Celery below

As with starting the Celery workers, the folder that the pid, log and for beat, schedule files are to be written
must already exist and the user starting Celery beat must be able write to that folder.

To stop Celery beat, just press Ctrl+c

Configure the settings

	Follow the link presented on the front page to get to the user and group administration.

[image: Initial home page with no users in groups]

[image: Configuration menu]

	After the first users are configured, this link will no longer be presented and instead you can go to
Config -> Manage users.

	You will need the superuser username and password you created just after creating the database. The groups are

	viewgroup can browse the data only

	importsizegroup can use the csv import facility to add patient height and weight information

	importqrgroup can use the DICOM query-retrieve facility to pull in studies, as long as they are pre-configured

	exportgroup can view and export data to a spreadsheet

	pidgroup can search using patient names and IDs depending on settings, and export with patient names and IDs
if they are also a member of the exportgroup

	admingroup can delete studies, configure DICOM Store/QR settings, configure DICOM keep or delete settings,
configure patient ID settings, and abort and delete patient size import jobs. Members of the admingroup no longer
inherit the other groups permissions.

[image: Selecting groups in Django user admin]

	In addition to adding users to these groups, you may like to grant a second user superuser and staff status
so that there are at least two people who can manage the users

	Return to the OpenREM interface (click on View site at the top right)

[image: Link from Django user admin back to OpenREM]

	Go to Config -> DICOM object delete settings and configure appropriately (see Delete objects configuration)

	Go to Config -> Patient ID settings and configure appropriately (see Patient identifiable data)

	If you want to use OpenREM as a DICOM store, or to use OpenREM to query remote systems, go to
Config -> Dicom network configuration. For more information go to DICOM Store and QR (not yet up to date)

	With data in the system, you will want to go to Config -> View and edit display names and customise
the display names. An established system will have several entries for each device, from each time the software
version, station name or other elements changes. See Viewing and editing individual x-ray system display names using the web interface for more information

Start using it!

Add some data!

openrem_rdsr.py rdsrfile.dcm

Further instructions

Daemonising Celery

In a production environment, Celery will need to start automatically and
not depend on a particular user being logged in. Therefore, much like
the webserver, it will need to be daemonised. For now, please refer to the
instructions and links at http://celery.readthedocs.org/en/latest/tutorials/daemonizing.html.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Configuration

See also: local_settings.py Configuration

	Delete objects configuration
	Configure what is deleted

	Reviewing the settings

	Viewing and editing individual x-ray system display names using the web interface
	The display name field

	Viewing x-ray system display names

	Changing x-ray system display names

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Configuration

Delete objects configuration

OpenREM is able to automatically delete DICOM objects if they can’t be used by OpenREM or if they have been processed.
This has the following advantages:

	The server doesn’t need to have much storage space

	It can help with information governance if the database is set to not store patient identifiable data (see
Patient identifiable data)

Warning

If OpenREM is set to delete objects and you pass a local file to OpenREM using the command line, the source file
will be deleted (as long as the filesystem permissions allow).

Configure what is deleted

Use the Config menu and select DICOM object delete settings:

[image: Config menu with delete option highlighted]
The Config menu

This will open the configuration page:

[image: Modify DICOM object delete settings]
Modify DICOM object deletion policy

The initial settings are to not delete anything. However, you are likely to want to delete objects that don’t match any
import filters, and also to delete images such as mammo, DX and Philips CT, as these will take up space much more
quickly than the radiation dose structured reports.

Reviewing the settings

When you have set your preferences, you will be redirected to the DICOM network configuration page, where at the bottom
you can review the current settings:

[image: DICOM object deletion poligy review on DICOM config page]
Deletion policies can be reviewed on the DICOM network configuration page

More information about the DICOM network configuration can be found on the DICOM Store and QR page.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Configuration

Viewing and editing individual x-ray system display names using the web interface

New in 0.7.0

Contents

	Viewing and editing individual x-ray system display names using the web interface
	The display name field

	Viewing x-ray system display names

	Changing x-ray system display names

The display name field

Previous versions of OpenREM used each x-ray system’s DICOM station name as
the identifier for each x-ray system. The front page showed a summary of the
number of studies for each unique station name stored in the system.
This led to a problem if multiple x-ray systems used the same station name: the
OpenREM home page would only show one station name entry for these systems,
with the number of studies corresponding to the total from all the rooms. The
name shown alongside the total was that of the system that had most recently
sent data to the system.

This issue has been resolved by introducing a new field called
display name. This is unique to each piece of x-ray equipment, based on the
combination of the following eight fields:

	manufacturer

	institution name

	station name

	department name

	model name

	device serial number

	software version

	gantry id

The default text for display name is set to a combination of
institution name and station name.

Viewing x-ray system display names

[image: User options menu]
The Config menu (user)

If you log in as a normal user then the Config menu becomes available
at the right-hand end of the navigation bar at the top of the screen.

The third option, View display names, takes you to a page where you can
view the list of x-ray systems with data in OpenREM together with their
current display name. The x-ray systems are grouped into modalities and
displayed in five tables: CT; mammography; DX and CR; fluoroscopy; and
other.

[image: List of current display names]
Example list of display names

Changing x-ray system display names

[image: Admin menu]
The Config menu (admin)

If you wish to make changes to a display name then you must log in as a user
that is in the admingroup. You will then be able to use the
View and edit display names item under the Config menu:

This will take you to a page where you can view the list of x-ray systems with
data in OpenREM. If you wish to change a display name then click on the
corresponding row. The resulting page will allow you to edit the display name.
Click on the Update button to confirm your changes:

[image: Update a display name]
Example of the page for updating a display name

You can set multiple rows to the same display name. You may wish to do this if
a system has a software upgrade, for example, as this will generate a new
default display name for studies carried out after the software upgrade has
taken place. The studies from these will be grouped together as a single entry
on the OpenREM homepage and individual modality pages.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Importing data to OpenREM

Importing dose related data from DICOM files

If you are using linux, or for Windows if you have put
C:\Python27\;C:\Python27\Lib\site-packages;C:\Python27\Scripts onto
your system path, you should be able to import from the command line:

Radiation Dose Structured Reports

openrem_rdsr.py filename.dcm

You can use wildcards to process a number of files at once, ie:

openrem_rdsr.py *.dcm

For mammography DICOM images

openrem_mg.py filename.dcm

The facility for extracting dose information from mammography DICOM images
has been designed and tested with images created with the GE Senographe DS.
It has now also been used with the images generated by the
following systems:

	GE Senographe Essential

	Hologic Selenia

	Siemens Inspiration

For radiographic DICOM images

openrem_dx.py filename.dcm

For CT dose summary files from Philips CT scanners

openrem_ctphilips.py filename.dcm

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

DICOM Store and QR

To make the most of OpenREM, you need a DICOM store node and maybe use DICOM query-retrieve too. The documents below
walk you though how to set this up.

We are recommending that production installs make use of a third party provided DICOM store node as the in-built one has
not yet proved reliable enough at this time - any help with testing and improvement would be most welcome! This is why
we have provided documentation to work with conquest too.

	DICOM Network Configuration
	Configuring DICOM store nodes in OpenREM

	Native DICOM store node with direct import

	Third-party DICOM store node for scripted import to OpenREM

	Status of DICOM Store SCP nodes

	Query retrieve of third-party system, such as a PACS or modality

	Troubleshooting: openrem_store.log

	Conquest DICOM store node on Ubuntu
	Installation

	Basic configuration

	Testing basic configuration

	Configure Conquest to work with OpenREM

	DICOM Query Retrieve Service
	Query-retrieve using the web interface

	Query-retrieve using the command line interface

	Troubleshooting: openrem_qr.log

The following instructions might also be useful with a Conquest setup, but they need review and updating:

	Running Conquest on Windows as a service
	Run as a service

	Firewall settings

	Configuring Conquest DICOM server to automatically forward data to OpenREM

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	DICOM Store and QR

DICOM Network Configuration

Configuring DICOM store nodes in OpenREM

You need to configure one or more DICOM Store nodes (Store Service Class Provider, or Store SCP) if you want either of
the following:

	OpenREM to provide DICOM store functionality

	OpenREM to be able to query retrieve a third-party system (PACS or modality), using the OpenREM Store SCP or a third
party one, such as Conquest

To configure a DICOM Store SCP, on the Config menu select DICOM network configuration, then click
Add new Store and fill in the details (see figure 1):

[image: DICOM Store SCP configuration]
Figure 1: DICOM Store SCP configuration

	Name of local store node: This is the friendly name, such as OpenREM store

	Application Entity Title of the node: This is the DICOM name for the store, and must be letters or numbers only, no
spaces, and a maximum of 16 characters

	Port for store node: Port 104 is the reserved DICOM port, but it is common to use high ports such as 8104, partly
because ports up to 1024 usually need more privileges than for the high ports. However, if there is a firewall
between the remote nodes (modalities, PACS) and the OpenREM server, then you need to make sure that the firewall is
configured to allow the port you choose here

Native DICOM store node with direct import

Warning

Native DICOM store functionality has not proved to be stable over long periods. Therefore we cannot recommend that
you use this feature in a production environment. However, please do test it and help us to improve it if you are
able to!

Warning

If you use supervisord or similar on Linux, then you might not be able to use the web interface or possibly the
auto-start service as new threads spawned for the Store SCP tend to get killed. This wouldn’t prevent you starting
the SCP in a shell. See Issue #337 [https://bitbucket.org/openrem/openrem/issues/337/storescp-is-killed-if-daemonized-when]

An OpenREM DICOM Store SCP (service class provider) enables modalities or PACS to send DICOM structured reports and
images directly to OpenREM where they are imported into the database.

The Store SCP service receives the data, checks whether it is one of the objects that OpenREM can extract data from,
and starts an import task if applicable.

The object is then left in the dicom_in folder in the media folder, or it is deleted, depending on the policy
set in Delete objects configuration.

For native DICOM store nodes, you need to open the Advanced - test/development use only section (see figure 2):

[image: DICOM Store SCP advanced configuration]
Figure 2: DICOM Store SCP advanced configuration

	Control the server using OpenREM: this checkbox will enable OpenREM to create and control the node

	Auto-start the server using celery beat: if checked, and if Celery periodic tasks: beat is running, then OpenREM will attempt
to start the store node whenever it finds it not to be running.

Third-party DICOM store node for scripted import to OpenREM

If you are using Conquest or another third-party Store SCP to collect DICOM data, simply fill in the basic details as
above without configuring the settings in the Advanced section. This will enable you to request remote hosts send
data to your Store SCP in the retrieve part of the query-retrieve operation.

See Conquest DICOM store node on Ubuntu and Running Conquest on Windows as a service for more information about using Conquest with OpenREM

Status of DICOM Store SCP nodes

DICOM Store SCP advanced configuration

[image: DICOM Store SCP status "Alive"]

[image: DICOM Store SCP status "Association fail"]
Figure 3: DICOM Store SCP status - Alive and Association failed

DICOM Store SCP nodes that have been configured are listed in the left column of the DICOM network configuration page.
For each server, the basic details are displayed, including the Database ID which is required for command line/scripted
use of the query-retrieve function.

In the title row of the Store SCP config panel, the status will be reported either as ‘Server is alive’ or ‘Error:
Association fail - server not running?’ - see figure 3

Controlling native Store SCP nodes

If a native Store SCP node is not running, then a Start server button will be presented at the bottom right. If it
is running, this buttin will change to Stop server, and the Delete button will become inactive.

If the node is configured to be auto-started, and if Celery periodic tasks: beat is running, then each minute if the server is
not started Celery will try to start the node. If you intend to stop the node for some reason, modify the configuration
so that auto-start is not selected, then stop the server.

Query retrieve of third-party system, such as a PACS or modality

To Query-Retrieve a remote host, you will need to configure both a local Store SCP and the remote host.

To configure a remote query retrieve SCP, on the Config menu select DICOM network configuration, then click
Add new QR Node and fill in the details:

	Name of QR node: This is the friendly name, such as PACS QR

	AE Title of the remote node: This is the DICOM name of the remote node, 16 or fewer letters and numbers, no spaces

	AE Title this server: This is the DICOM name that the query (DICOM C-Find) will come from. This may be important if
the remote node filters access based on calling aet. Normal rules of 16 or fewer letters and numbers, no spaces

	Remote port: Enter the port the remote node is using (eg 104)

	Remote IP address: The IP address of the remote node, for example 192.168.1.100

	Remote hostname: Alternatively, if your network has a DNS server that can resolve the hostnames, you can enter the
hostname instead. If the hostname is entered, it will be used in preference to the IP address, so only enter it if
you know it will be resolved.

Now go to the DICOM Query Retrieve Service documentation to learn how to use it.

Troubleshooting: openrem_store.log

If the default logging settings haven’t been changed then there will be a log files to refer to. The default
location is within your MEDIAROOT folder:

This file contains information about each echo and association that is made against the store node, and any objects that
are sent to it.

The following is an example of the log for a Philips dose info image being received:

[21/Feb/2016 21:13:43] INFO [remapp.netdicom.storescp:310] Starting AE... AET:MYSTOREAE01, port:8104
[21/Feb/2016 21:13:43] INFO [remapp.netdicom.storescp:314] Started AE... AET:MYSTOREAE01, port:8104
[21/Feb/2016 21:13:43] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:13:44] INFO [remapp.netdicom.storescp:54] Store SCP: Echo received
[21/Feb/2016 21:13:46] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:13:46] INFO [remapp.netdicom.storescp:54] Store SCP: Echo received
[21/Feb/2016 21:13:49] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:13:49] INFO [remapp.netdicom.storescp:54] Store SCP: Echo received
[21/Feb/2016 21:13:50] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:13:50] INFO [remapp.netdicom.storescp:54] Store SCP: Echo received
[21/Feb/2016 21:13:51] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:13:51] INFO [remapp.netdicom.storescp:54] Store SCP: Echo received
[21/Feb/2016 21:14:39] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:14:39] INFO [remapp.netdicom.storescp:78] Received C-Store. Stn name NM-54316, Modality CT,
SOPClassUID Secondary Capture Image Storage, Study UID 1.2.840.113564.9.1.2843752344.47.2.5000947881 and Instance
UID 1.2.840.113704.7.1.1.4188.1234134540.349
[21/Feb/2016 21:14:39] INFO [remapp.netdicom.storescp:232] File
/var/openrem/media/dicom_in/1.2.840.113704.7.1.1.4188.1453134540.349.dcm written
[21/Feb/2016 21:14:39] INFO [remapp.netdicom.storescp:263] Processing as Philips Dose Info series
...etc

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	DICOM Store and QR

Conquest DICOM store node on Ubuntu

Installation

Ubuntu has reasonably up to date versions of the Conquest DICOM server in its repositories, [http://packages.ubuntu.com/search?keywords=conquest] so this makes
installation very easy.

There are options to install with different databases – for OpenREM we’re not really going to use the
database so the easiest option is to use SQLite:

sudo apt-get install conquest-sqlite

Basic configuration

Modify dgatesop.lst

Edit the dgatesop.lst file in the /etc/conquest-dicom-server folder, for example

sudo nano /etc/conquest-dicom-server/dgatesop.lst

And add the following line

XRayRadiationDoseSR 1.2.840.10008.5.1.4.1.1.88.67 sop

It isn’t critical where it goes, but I tend to add it where it belongs between
KeyObjectSelectionDocument and PETStorage. I also add in the spaces to make it line up, but
again this is just for aesthetic reasons!

If you are pasting from the clipboard into nano from within Linux, use Shift-Ctrl-v. If you are using
PuTTY in Windows to interact with Ubuntu, a right click on the mouse or Shift-Insert should paste the text into the
terminal.

To save and exit from nano, use Ctrl-o (out), press return to confirm the filename and then Ctrl-x (exit).

Configure the Store SCP

Edit the dicom.ini file in the /etc/conquest-dicom-server folder, for example

sudo nano /etc/conquest-dicom-server/dicom.ini

Modify the following lines as required. The server name field – with the Conquest default of CONQUESTSRV1 – is the
AE Title, so should be 16 characters or less and consist of letters and numbers with no spaces. It is case
insensitive. The TCPPort is normally either 104, the standard DICOM port, or any number greater than
1023.

Network configuration: server name and TCP/IP port#
MyACRNema = CONQUESTSRV1
TCPPort = 11112

Again, save and exit.

If you’ve changed the AE Title and/or port, restart conquest:

sudo /etc/init.d/dgate restart

Testing basic configuration

Test the Store SCP by returning to OpenREM and navigating to Config -> DICOM network configuration.

Click to Add new store and enter the AE title and port you have set, along with a reference name.

Click to Submit, and you will return to the summary page which should inform you if the server is running.

Configure Conquest to work with OpenREM

The next stage is to configure Conquest to store the incoming object and ask OpenREM to process them.

Bash scripts

Create a bash script for each of RDSR, mammo, DX and Philips CT dose images, as required. They should have
content something like the following. The examples that follow assume the files have been saved in the folder
/etc/conquest-dicom-server but you can save them where you like and change the dicom.ini commands accordingly.

These scripts have a line in them to activate the virtual environment; this is done in the line
. /var/dose/venv/bin/activate – you should change the path to your virtualenv or remove it if you have installed
without using a virtualenv.

Eash script also has a line to delete the object after it has been imported – OpenREM can also do this by
configuration, but the file will be written by the _conquest user, and OpenREM will not be running as that
user. Therefore it is easier to have conquest delete the file. If you don’t want them to be deleted, remove
or comment out that line (add a # character to the start of the line).

	Radiation Dose Structured Reports

	Use which ever editor you are comfortable with – a good choice might be nano. For example:

sudo nano /etc/conquest-dicom-server/openrem-rdsr.sh

#!/bin/sh
#
usage: ./openrem-rdsr.sh rdsrfilepath
#

Get the name of the RDSR as variable 'rdsr'
rdsr="$1"

Setup the python virtual environment - change to suit your path or remove if
you are not using virtualenv
. /var/dose/venv/bin/activate

Import RDSR into OpenREM
openrem_rdsr.py ${rdsr}

Delete RDSR file - remove or comment (#) this line if you want the file to remain
rm ${rdsr}

Save and exit, then set the script to be executable:

sudo chmod +x /etc/conquest-dicom-server/openrem-rdsr.sh

And repeat for the other modality scripts below:

	Mammography images

sudo nano /etc/conquest-dicom-server/openrem-mg.sh

#!/bin/sh
#
usage: ./openrem-mg.sh mammofilepath
#

mamim="$1"

. /var/dose/venv/bin/activate

openrem_mg.py ${mamim}

rm ${mamim}

sudo chmod +x /etc/conquest-dicom-server/openrem-mg.sh

	Radiography images (DX, and CR that might be DX)

sudo nano /etc/conquest-dicom-server/openrem-dx.sh

#!/bin/sh
#
usage: ./openrem-dx.sh dxfilepath
#

dxim="$1"

. /var/dose/venv/bin/activate

openrem_dx.py ${dxim}

rm ${dxim}

sudo chmod +x /etc/conquest-dicom-server/openrem-dx.sh

	Philips CT dose info images for Philips CT systems with no RDSR

sudo nano /etc/conquest-dicom-server/openrem-ctphilips.sh

#!/bin/sh
#
usage: ./openrem-ctphilips.sh philipsctpath
#

philipsim="$1"

. /var/dose/venv/bin/activate

openrem_ctphilips.py ${philipsim}

rm ${philipsim}

sudo chmod +x /etc/conquest-dicom-server/openrem-ctphilips.sh

Conquest configuration

At the end of the /etc/conquest-dicom-server/dicom.ini file, add the following lines. You will need
to tailor them to save the file to an appropriate place. The _conquest user will need to be able to
write to that location. You will also need to make sure the path to the scripts you just created are correct.

The example below assumes images will be saved in /var/lib/conquest-dicom-server/incoming/, which you can create as
follows:

sudo mkdir /var/lib/conquest-dicom-server/incoming
sudo chown _conquest:_conquest /var/lib/conquest-dicom-server/incoming

Each instruction in the dicom.ini file below has a destroy instruction to delete Conquest’s copy of the file
and to remove it from it’s database. This isn’t the version we’ve saved in incoming to process.

sudo nano /etc/conquest-dicom-server/dicom.ini

RDSR
ImportConverter0 = ifequal "%V0008,0016","1.2.840.10008.5.1.4.1.1.88.67"; {save to /var/lib/conquest-dicom-server/incoming/%o.dcm; system /etc/conquest-dicom-server/openrem-rdsr.sh /var/lib/conquest-dicom-server/incoming/%o.dcm; destroy}
Import arguments for GE CT - uses Enhanced SR instead of Radiation Dose SR
ImportConverter1 = ifequal "%V0008,0016","1.2.840.10008.5.1.4.1.1.88.22"; {save to /var/lib/conquest-dicom-server/incoming/%o.dcm; system /etc/conquest-dicom-server/openrem-rdsr.sh /var/lib/conquest-dicom-server/incoming/%o.dcm; destroy}

MG images
ImportModality2 = MG
ImportConverter2 = save to /var/lib/conquest-dicom-server/incoming/%o.dcm; system /etc/conquest-dicom-server/openrem-mg.sh /var/lib/conquest-dicom-server/incoming/%o.dcm; destroy

DX images
ImportModality3 = DX
ImportConverter3 = save to /var/lib/conquest-dicom-server/incoming/%o.dcm; system /etc/conquest-dicom-server/openrem-dx.sh /var/lib/conquest-dicom-server/incoming/%o.dcm; destroy
CR images
ImportModality4 = CR
ImportConverter4 = save to /var/lib/conquest-dicom-server/incoming/%o.dcm; system /etc/conquest-dicom-server/openrem-dx.sh /var/lib/conquest-dicom-server/incoming/%o.dcm; destroy

Philips CT
ImportConverter5 = ifequal "%V0008,0016","1.2.840.10008.5.1.4.1.1.7"; {save to /var/lib/conquest-dicom-server/incoming/%o.dcm; system /etc/conquest-dicom-server/openrem-ctphilips.sh /var/lib/conquest-dicom-server/incoming/%o.dcm; destroy}

Other objects
ImportConverter6 = destroy

Finally, restart conquest to make use of the new settings:

sudo /etc/init.d/dgate restart

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	DICOM Store and QR

DICOM Query Retrieve Service

To query retrieve dose related objects from a remote server, you need to review the DICOM Network Configuration first.

Query-retrieve using the web interface

[image: Import Query-Retrieve menu]
Figure 1: Import Query-Retrieve menu

	On the Imports menu, select Query remote server - see figure 1. If the menu isn’t there, you need to check your user permissions
- see Configure the settings for details.

	Each configured query-retrieve node and each local store node is automatically tested to make sure they respond to a
DICOM echo - the results are presented at the top of the page. See fingure 2 for an example.

[image: local and remote QR statuses]
Figure 2: Local and remote QR statuses

	Select the desired remote host, ie the PACS or modality you wish to query.

	Select the local store node you want to retrieve to.

	Select which modalities you want to query for - at least one must be ticked.

	Select a date range - the wider this is, the more stress the query will place on the remote server, and the higher
the likelyhood of the query being returned with zero results (a common configuration on the remote host to prevent
large database queries affecting other services).

	If you wish to exclude studies based on their study description, enter the text here. Add several terms by separating
them with a comma. One example would be to exclude any studies with imported in the study description, if
your institution modifies this field on import. The matching is case-insensitive.

	Alternatively, you might want to only keep studies with particular terms in the study description. If so, enter them
in the next box, comma separated.

Advanced query options

	Include SR only studies default not ticked: If you have a DICOM store with only the radiation dose structured
reports (RDSR) in, or a mix of whole studies and RDSRs without the corresponding study, then tick this box.

	Ignore studies already in the database default ticked: The RDSR import routine checks for the existance of the
study UID in the database, and if it is found they it doesn’t go any further. This might change in the future as there
are instances where two RDSRs might legitimately have the same study UID, but different event UIDs. For image based
imports, the individual events are checked, so if you think there is a reasonable chance that the database is missing
individual images from a study, then you might like to deselect this setting. If the same dates are selected multiple
times (to update during a day for example), activating this setting will result in the same exams all being
transferred each time.

When you have finished the query parameters, click Submit

Review and retrieve

The progress of the query is reported on the right hand side. If nothing happens, ask the adminsitrator to check if the
celery queue is running.

Once all the responses have been purged of unwanted modalities, study descriptions or study UIDs, the number of studies
of each type will be displayed and a button appears. Click Retreive to request the remote server send the selected
objects to your selected Store node. This will be based on your original selection - changing the node on the left hand
side at this stage will have no effect.

The progress of the retrieve is displayed in the same place until the retrieve is complete.

Query-retrieve using the command line interface

In a command window/shell, qrscu.py -h should present you with the following output:

usage: qrscu.py [-h] [-ct] [-mg] [-fl] [-dx] [-f yyyy-mm-dd] [-t yyyy-mm-dd]
 [-e string] [-i string] [-sr] [-dup] qrid storeid

Query remote server and retrieve to OpenREM

positional arguments:
 qrid Database ID of the remote QR node
 storeid Database ID of the local store node

optional arguments:
 -h, --help show this help message and exit
 -ct Query for CT studies
 -mg Query for mammography studies
 -fl Query for fluoroscopy studies
 -dx Query for planar X-ray studies
 -f yyyy-mm-dd, --dfrom yyyy-mm-dd
 Date from, format yyyy-mm-dd
 -t yyyy-mm-dd, --duntil yyyy-mm-dd
 Date until, format yyyy-mm-dd
 -e string, --desc_exclude string
 Terms to exclude in study description, comma separated, quote whole
 string
 -i string, --desc_include string
 Terms that must be included in study description, comma separated,
 quote whole string
 -sr Advanced: Query for structured report only studies
 -dup Advanced: Retrieve studies that are already in database

As an example, if you wanted to query the PACS for DX images on the 5th April 2010 with any study descriptions including
imported excluded, first you need to know the database IDs of the remote node and the local node you want the images
sent to. To find these, go to the DICOM Network Configuration page where the database ID is listed among the other details for
each node.

Assuming the PACS database ID is 2, and the store node ID is 1, the command would look something like:

qrscu.py 2 1 -dx -f 2010-04-05 -t 2010-04-05 -e "imported"

If you want to do this regularly to catch new studies, you might like to use a script something like this on linux:

#!/bin/bash

. /var/openrem/bin/activate # activate virtualenv if you are using one, modify or delete this line

ONEHOURAGO=$(date -d "1 hour ago" "+%Y-%m-%d")

openrem_qr.py 2 1 -dx -f $ONEHOURAGO -t $ONEHOURAGO -e "Imported"

This script could be run once an hour using a cron job. By asking for the date an hour ago, you shouldn’t miss exams
taking place in the last hour of the day.

A similar script could be created as a batch file on Windows and run using the scheduler.

Troubleshooting: openrem_qr.log

If the default logging settings haven’t been changed then there will be a log files to refer to. The default
location is within your MEDIAROOT folder:

This file contains information about the query, the status of the remote node, the C-Find response, the
analysis of the response, and the individual C-Move requests.

The following is an example of the start of the log for the following query which is run once an hour (ie some
responses will already have been imported):

qrscu.py 2 1 -dx -f 2016-05-04 -t 2016-05-04 -e "imported"

[04/May/2016 11:30:02] INFO [remapp.netdicom.qrscu:580] qrscu script called
[04/May/2016 11:30:02] INFO [remapp.netdicom.qrscu:595] Modalities are ['DX']
[04/May/2016 11:30:02] INFO [remapp.netdicom.qrscu:601] Date from: 2016-05-04
[04/May/2016 11:30:02] INFO [remapp.netdicom.qrscu:604] Date until: 2016-05-04
[04/May/2016 11:30:02] INFO [remapp.netdicom.qrscu:610] Study description exclude terms are ['imported']
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:267] Request association with Hospital PACS PACSAET01 (PACSEAT01 104 DICOM_QR_SCP)
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:277] assoc is ... <Association(Thread-7208, started daemon 140538998306560)>
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:280] DICOM Echo ...
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:282] done with status Success
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:284] DICOM FindSCU ...
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:311] Currently querying for DX studies...
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:04] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:04] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:04] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:05] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:05] INFO [remapp.netdicom.qrscu:311] Currently querying for CR studies...
[04/May/2016 11:30:05] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:05] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:06] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:06] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:06] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:07] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:10] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:10] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:11] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:11] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:12] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:12] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:12] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:12] INFO [remapp.netdicom.qrscu:339] Checking to see if any of the 16 studies are already in the OpenREM database
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:343] Now have 11 studies
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:349] Deleting studies we didn't ask for
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is DX, mod_set is ["CR"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is CR, mod_set is ["CR"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is DX, mod_set is ["PR", "DX"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is CR, mod_set is ["PR", "DX"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is DX, mod_set is ["DX"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is CR, mod_set is ["DX"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is DX, mod_set is ["PR", "CR"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is CR, mod_set is ["PR", "CR"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:367] Now have 11 studies
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:372] Deleting series we can't use
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:408] Now have 11 studies
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:413] Deleting any studies that match the exclude criteria
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:422] Now have 6 studies after deleting any containing any of [u'imported']
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:438] Release association
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:499] Preparing to start move request
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:504] Requesting move of 6 studies
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:509] Mv: study_no 1
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:515] Mv: study no 1 series no 1
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:528] Requesting move: modality DX, study 1 (of 6) series 1 (of 1). Series contains 1 objects
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:44] Move association requested
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:53] Move association released
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:532] _move_req launched
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:509] Mv: study_no 2
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:515] Mv: study no 2 series no 1
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:528] Requesting move: modality DX, study 2 (of 6) series 1 (of 1). Series contains 2 objects
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:19] INFO [remapp.netdicom.qrscu:44] Move association requested
[04/May/2016 11:30:29] INFO [remapp.netdicom.qrscu:48] gg is Pending
[04/May/2016 11:30:30] INFO [remapp.netdicom.qrscu:53] Move association released
...etc

If you are using an OpenREM native storage node, then you might also like to review Troubleshooting: openrem_store.log

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	DICOM Store and QR

Running Conquest on Windows as a service

Note

Content contributed by DJ Platten, with edit by ET McDonagh

This guide assumes Conquest has already been installed and runs ok. These
instructions are based on Windows XP.

Run as a service

	Make sure conquest isn’t running.

	Open a file browser and navigate to your conquest folder.

	Right-hand click on the “ConquestDICOMServer.exe” file and choose “Run as...”

	Enter the username and password of a Windows user with administrator rights.

	Once conquest is running, click on the “Install server as NT service” on the “Configuration” tab.

	Close the conquest Window.

	Log in to Windows as a user with administrator rights.

	Go to “Control panel” -> “Administrative Tools” -> “Services”.

	There will be a service with the same name as conquest’s AE title. Right-hand click the mouse on this service and select “Properties”.

	On the “Log On” tab check the box that says “Allow service to interact with the desktop”.

	Click “Apply” then “OK”.

	Right-hand click on the service again and click “Restart”.

The “Allow service to interact with the desktop” seems to be necessary for the batch to run that puts the dose report into OpenREM.

Firewall settings

Windows is able to change its firewall settings after you think everything is
working ok! Assuming you have control of the firewall, add three port exceptions
to the Windows firewall on the server computer: ports 80 and 443 for Apache,
and whichever port that was chosen for conquest (104 is the port allocated
to DICOM, but you may have used a higher port above 1024 for permissions reasons).

The firewall instructions at portforward.com [http://portforward.com/english/routers/firewalling/Microsoft/WindowsXPFirewallFirewall/Apache.htm]
were found to be a useful guide for this.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	DICOM Store and QR

Configuring Conquest DICOM server to automatically forward data to OpenREM

The Conquest DICOM server can be configured to automatically run tasks when it receives specific types of DICOM object. For example, a script can be run when a DX image is received that will extract dose information into OpenREM; Conquest will then delete the original image.

These actions are set up in the dicom.ini file, located in the root of the Conquest installation folder.

For example:

ImportModality1 = MG
ImportConverter1 = save to C:\conquest\dosedata\mammo\%o.dcm; system C:\conquest\openrem-mam-launch.bat C:\conquest\dosedata\mammo\%o.dcm; destroy

ImportModality1 = MG tells Conquest that modality 1 is MG. The commands listed in the ImportConverter1 line are then run on all incoming MG images.

The ImportConverter instructions are separated by semicolons; the above example has three commands:

	save to C:\conquest\dosedata\mammo\%o.dcm saves the incoming MG image to the specified folder with a file name set to the SOP instance UID contained in the image

	system C:\conquest\openrem-mam-launch.bat C:\conquest\dosedata\mammo\%o.dcm runs a DOS batch file, using the newly saved file as the argument. On my system this batch file runs the OpenREM openrem_mg.py import script

	destroy tells Conquest to delete the image that it has just received.

My system has three further import sections for DX, CR, and structured dose report DICOM objects:

Import of DX images
ImportModality2 = DX
ImportConverter2 = save to C:\conquest\dosedata\dx\%o.dcm; system C:\conquest\openrem-dx-launch.bat C:\conquest\dosedata\dx\%o.dcm; destroy

Import of CR images
ImportModality3 = CR
ImportConverter3 = save to C:\conquest\dosedata\dx\%o.dcm; system C:\conquest\openrem-dx-launch.bat C:\conquest\dosedata\dx\%o.dcm; destroy

Import of structured dose reports (this checks the DICOM tag 0008,0016 to see if it matches the value for a dose report)
ImportConverter4 = ifequal "%V0008,0016","1.2.840.10008.5.1.4.1.1.88.67"; {save to C:\conquest\dosedata\sr\%o.dcm; system C:\conquest\openrem-sr-launch.bat "C:\conquest\dosedata\sr\%o.dcm"; destroy}

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Patient identifiable data

Prior to version 0.7, no data that is generally considered to be patient identifiable was stored in the OpenREM database.

The following patient descriptors have always been recorded if they were available:

	Patient age at the time of the study, but not date of birth (though this could be calculated from age)

	Patient sex

	Patient height

	Patient weight

In addition, a key identifier for the exam that is normally not considered patient identifiable was stored:

	Study accession number

It has become apparent that there are reasons where people need to store patient identifiable data to make the most of
OpenREM, so this is now configurable from version 0.7 onwards.

Configure what is stored

[image: Configuration menu]

On the Config menu, select Patient ID settings. The initial settings are as follows:

[image: Modify patient identifiable data settings]

The default for patient name, ID and date of birth is to not store them. There isn’t an option currently to not store
the accession number, though OpenREM continues to work if it is missing.

To store patient identifiable data from now on, select the relevant box and press Submit. If you change the
setting again later, then data already stored will remain in the database.

Store encrypted data only

If you wish to have the patient name and/or ID available for finding studies relating to a specific patient, but do
not need to identify who that patient is, then it is possible to create an ‘encrypted’ version of the ID or name. In this
case, a one-way SHA 256 hash is generated and the hash value is stored instead.

If exactly the same name or ID (including spelling, spacing, case etc) occurs more than once, then the same hash
will be generated.

The same applies to accession numbers if the option to encrypt the accession number is selected.

Using patient identifiable data

Querying for patient studies

In the modality pages of the OpenREM web interface, if you are in the pidgroup you will have a filter for patient
name and patient ID available:

[image: Patient name and ID in search filter]

If the values in the database are not encrypted, then partial search terms can be used as a case-insensitive
‘contains’ query will be applied.

If the values are encrypted, then only the entire string, with exactly the same case, spacing and punctuation will
match. This is more likely to be successful with patient ID than with patient name.

Study export with patient identifiers

Users in the pidgroup will have extra export buttons available in the modality pages:

[image: Export buttons for pidgroup users]

If the IDs or names are encrypted, then these columns will contain the hash rather than the original values. However, it
will be possible to see if more than one study belongs to one patient as the values should be the same for both. Due to
the nature of the algorithm however, a single change in the name or ID - such as an upper case letter instead of a lower
case one - will be recorded as a completely different hash value.

Any exports with either patient name or patient ID included will also have a date of birth column.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Navigating, filtering and study details

Navigating the OpenREM web interface

Depending on your web server setup, your web interface to OpenREM will
usually be at http://yourserver/openrem or if you are using the test web
server then it might be at http://localhost:8000/openrem.

The home page for OpenREM should look something like this when it is
populated with studies:

[image: OpenREM homepage screenshot]
By selecting the links in the navigation bar at the top, you can view all
of the CT, fluoroscopy or mammography studies. Alternatively, if you click
on the station name link (in blue) you can filter to just that source modality.

New in 0.4.0: If you are not logged in, clicking any of the links will bring up the log in page.

Filtering for specific studies

This image shows the CT studies view, available to any logged in user, filtered by entering terms in the
boxes on the right hand side to show just the studies where the modality
model name includes the term ‘soma’:

[image: Filtering CT studies]
The search fields can all be used on their own or together, and they are
all case insensitive ‘contains’ searches. The exception is the date field,
where both from and to have to be filled in (if either are), and the format
must be yyyy-mm-dd. There currently isn’t any more complex filtering
available, but it does exist as issue 17 [https://bitbucket.org/openrem/openrem/issue/17/]
for a future release.

The last box below the filtering search boxes is the ordering preference.

Viewing study details

By clicking on the study description link (in blue), you can see more
details for an individual study:

[image: Individual CT study]
Not all the details stored for any one study are displayed, just those thought
to be most useful. If there are others you’d like to see, add an issue to the tracker.

The final field in the summary at the top is called ‘Test patient indicators?’
When studies are imported the ID and patient name fields are both ignored, but they
are parsed to check if they have ‘phy’, ‘test’ or ‘qa’ in them to help exclude them
from the data analysis. If they do, then this information is added to the
field and is displayed both in the web interface as a Test patient indicator
and in the Excel export. The name and ID themselves are not reproduced,
simply the presence of one of the key words. Therefore a patient named
‘Phyliss’ would trigger this, but only ‘Phy’ would be reproduced in this field.
Other fields will also help to confirm whether a study is for a real patient
such as the lack of an Accession Number and an unusual patient age.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Charts

Chart types

1. Bar chart of average values across a number of categories

[image: Bar chart of mean DLP per acquisition]
Figure 1: Bar chart of mean DLP per acquisition

An example of mean DAP per acquisition type is shown in figure 1.

[image: Bar chart sorting options]
Figure 2: Bar chart sorting options

Below each bar chart there are options to sort the order of the data. This can
be ascending or descending by average value, size of data sample, or
alphabetically (figure 2).

Clicking on an entry in the bar chart legend toggles the display of the
corresponding series on the chart.

[image: Histogram of acquisition DLP]
Figure 3: Histogram of abdomen DLP values

Clicking on an individual data point on a bar chart will take you to a
histogram of the data for that point so that you can see the shape of the
value’s distribution (figure 3).

Bar charts can be plotted with a series per x-ray system (figure 4). This can
be toggled using the Plot a series per system checkbox in the Chart options.

Clicking the left-hand mouse button on the chart background and dragging left
or right selects part of the series. Releasing the mouse button zooms in on
this selection. A Reset zoom button appears when zoomed in: clicking this
resets the chart so that the full series can be seen again. The zoom feature
works on both the main series and the histograms. The zooming can be useful
when there is a category on the chart that has a very low value compared to
others. Zooming in on this category will enable the low values to be seen, as
the chart rescales the y-axis after the zoom.

[image: Bar chart of mean DLP (one system per series)]
Figure 4: Bar chart of mean DLP (one system per series)

If the the bar chart that you are viewing shows more than one series then
clicking on a category name on the x-axis will take you to a plot that shows
multiple histograms: one for each series (figure 5).

[image: Histogram of abdomen DLP (one series per system)]
Figure 5: Histogram of abdomen DLP values, one series per system

The histogram data can be plotted as absolute values, or be normalised to a
value of 1.0 (figure 6). This can be toggled by clicking on the button that is
shown below the histogram plots. The normalisation can be useful when trying to
compare the shape of several histograms, especially when some histograms have
much less data than others.

[image: Normalised histogram of abdomen DLP (one series per system)]
Figure 6: Normalised histogram of abdomen DLP, one series per system

Each histogram data point includes a text link that appears when the mouse
pointer moves over it. Clicking on this link will filter the displayed studies,
showing those that correspond to what is contained in the histogram bin.

Clicking on a legend entry toggles the visibility of the corresponding series.

2. Pie chart showing the frequency of each item in a category

[image: Pie chart of acquisition frequency]
Figure 7: Pie chart of acquisition frequency

Figure 7 shows a pie chart of the number of acquisitions made for every
acquisition protocol present in the tabulated data.

Clicking on any of the pie chart segments will filter the displayed studies,
showing only the studies that correspond to what is contained in that segment.
As for the bar charts, this doesn’t work perfectly, as the category filtering
isn’t exact.

3. Line chart showing how an average value changes over time

[image: Line chart of mean DLP per study type over time]
Figure 8: Line chart of mean DLP per study type over time

A line is plotted for each category, with a point calculated every day, week,
month or year. This can be a good way of looking at how things have changed
over time. For example, the mean DLP of each study type, calculated with a
data point per month is shown in figure 8.

Clicking the left-hand mouse button on the chart and dragging left or right
across a range of dates and then releasing the mouse button will zoom in on
that selection.

Clicking on a legend entry toggles the visibility of the corresponding series.

4. Pie chart showing the number of events per day of the week

[image: Pie chart of study workload per day of the week]
Figure 9: Pie chart of study workload per day of the week

[image: Pie chart of study workload per hour in a day]
Figure 10: Pie chart of study workload per hour in a day

Each segment represents a day of the week, and shows the number of events that
have taken place on that day (figure 9). Clicking on one of the segments will
take you to a pie chart that shows the number of events per on that day (figure
10).

5. Scatter plot showing one value vs. another

[image: Scatter plot of average glandular dose vs. compressed thickness]
Figure 11: Scatter plot of average glandular dose vs. compressed thickness

[image: Scatter plot of average glandular dose vs. compressed thickness; one series per system]
Figure 12: Scatter plot of average glandular dose vs. compressed thickness; one series per system

This plot type shows a data point per event (figure 11). The series name and
data values are shown when the mouse cursor is positioned over a data point.

These can be plotted with a series per x-ray system (figure 12). This can be
toggled using the Plot a series per system checkbox in the Chart options.

Clicking the left-hand mouse button on the chart and dragging a rectangular
region will zoom in on that selection of the chart. A Reset zoom button
appears when zoomed in: clicking this resets the chart so that the full series
can be seen again.

Clicking on a system’s legend entry toggles the display of the corresponding
series on the chart.

Exporting chart data

An image file of a chart can be saved using the menu in the top-right hand side
of any of the charts. The same menu can be used to save the data used to plot a
chart: the data can be downloaded in either csv or xls format.

New in 0.7.0

	Charts for fluoroscopy and mammography.

	New scatter plot chart type.

	Chart plotting options can be configured by choosing Chart options from
the User options menu at the top of the OpenREM homepage.

	Chart average values can be set to either mean or median. Bar charts can be
configured to plot both mean and median values as seperate series.

	Bar charts can be plotted with a series per x-ray system. This option can be
switched on or off via the Chart options.

	The number of histogram data bins can be set to a value between 2 and 40
in Chart options. The default value is 20.

	Histogram calculation can be switched on or off in Chart options. The
default is off. Performance is significantly better when set to off.

	Histogram plots can toggle between absolute or normalised values via the
Toggle Normalised histograms button that is visible when viewing a
histogram plot.

	The data in the bar charts can be sorted interactively by clicking on the
sorting options below the individual chart. The default sorting type and
direction can be set by choosing the Chart options item from the
User options menu on the OpenREM homepage.

	Individual charts can be displayed full-screen by clicking on the
Toggle fullscreen button that is positioned below each chart.

	The chart plotting status is displayed on the OpenREM homepage.

	The colours used for plotting have been updated.

Chart options

[image: OpenREM chart options]
Figure 13: OpenREM chart options

Chart options can be configured by choosing the Chart options item from the
User options menu on the OpenREM homepage (figure 13).

CT and radiographic plot options can also be set from their respective
summary pages.

The first option, Plot charts?, determines whether any plots are shown.
This also controls whether the data for the plots is calculated by OpenREM.
Some plot data is slow to calculate when there is a large amount of data: some
users may prefer to leave Plot charts? off for performance reasons.
Plot charts? can be switched on and activated with a click of the
Submit button after the data has been filtered.

[image: Switching charts off]
Figure 14: Switching charts off

The user can also switch off chart plotting by clicking on the
Switch charts off link in the User options menu in the navigation bar
at the top of any OpenREM page, as shown in figure 14.

The user can choose whether the data displayed on the charts is the mean,
median or both by using the drop-down Average to use selection. Only the
bar charts can display both mean and median together. Other charts display just
median data when this option is selected.

The charts can be sorted by either bar height, frequency or alphabetically by
category. The default sorting direction can be set to ascending or descending
using the drop-down list near the top of the chart options.

A user’s chart options can also be configured by an administrator via OpenREM’s
user administration page.

Chart types - CT

	Bar chart of average DLP for each acquisition protocol (all systems combined)

	Bar chart of average DLP for each acquisition protocol (one series per system)

	Pie chart of the frequency of each acquisition protocol

	Pie chart showing the number of studies carried on each day of the week

	Line chart showing the average DLP of each study name over time

	Bar chart of average CTDIvol for each acquisition protocol

	Bar chart of average DLP for each study name

	Pie chart of the frequency of each study name

	Bar chart of average DLP for each requested procedure

	Pie chart of the frequency of each requested procedure

Chart types - radiography

	Bar chart of average DAP for each acquisition protocol

	Pie chart of the frequency of each acquisition protocol

	Bar chart of average DAP for each study description

	Pie chart of the frequency of each study description

	Bar chart of average DAP for each requested procedure

	Pie chart of the frequency of each requested procedure

	Bar chart of average kVp for each acquisition protocol

	Bar chart of average mAs for each acquisition protocol

	Pie chart showing the number of studies carried out per weekday

	Line chart of average DAP of each acquisition protocol over time

	Line chart of average mAs of each acquisition protocol over time

	Line chart of average kVp of each acquisition protocol over time

Chart types - fluoroscopy

	Bar chart of average DAP for each study description

	Pie chart of the frequency of each study description

	Pie chart showing the number of studies carried out per weekday

Chart types - mammography

	Scatter plot of average glandular dose vs. compressed thickness for each
acquisition

	Pie chart showing the number of studies carried out per weekday

Performance notes

All chart types

For any study- or request-based charts, filtering using Acquisition protocol
forces OpenREM to use a much slower method of querying the database for chart
data. Where possible avoid filtering using this field, especially when viewing
a large amount of data.

Bar charts

Switching off histogram calculation in Chart options will speed up bar chart
data calculation.

Switching off Plot a series per system in the Chart options will speed up
data calculation.

Scatter plots

Switching off Plot a series per system in the Chart options will speed up
data calculation.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Calculation and display of skin dose maps

	Skin dose maps have been withdrawn from OpenREM version 0.7.0 due to
incorrect orientation calculations that need to be fixed before openSkin
can be reimplemented into OpenREM. It is hoped that they will be included
in version 0.7.1.

	Users can continue to export OpenREM studies in a format that can be used
with a stand-alone version of openSkin.

Functionality that will be available

	Skin dose map data calculated to the surface of a simple geometric phantom
using the in-built openSkin [http://bitbucket.org/openskin/openskin] routines (3D phantom)

	Phantom dimensions calculated from the height and mass of the patient

	Data can be calculated on import to OpenREM, or on demand when a study is
viewed

	3D skin dose map data shown graphically as a 2D image and a 3D model

	The user can change the maximum and minimum displayed dose; alternatively,
window level and width can be adjusted

	A colour dose scale is shown with a selection of colour schemes

	The skin dose map section can be displayed full-screen

	The calculated peak skin dose, phantom dimensions and patient height and mass
used for the calculations are shown in the top left hand corner of the skin
dose map

	If skin dose map display is disabled then fluoroscopy study data can be
exported in a format suitable for the stand-alone openSkin routines

The phantom consists of a cuboid with one semi-cylinder on each side (see
3D phantom section of phantom design [http://bitbucket.org/openskin/openskin/wiki/Phantom%20design] on the openSkin website for details). A
default height of 1.786 m and mass of 73.2 kg are used if patient-specific data
are unavailable.

2D visualisation of the 3D data

This is a 2D view of the whole surface of the 3D phantom, as though the phantom
surface has been peeled off and laid out flat. The 2D visualisation includes
the following features:

	The skin dose at the mouse pointer is shown as a tool-tip

	Moving the mouse whilst holding down the left-hand mouse button changes the
window level and width of the displayed skin dose map

	An overlay indicating the phantom regions and orientation can be toggled on
and off. This indicates the phantom anterior, left, posterior and right
sides, and also shows the superior and inferior ends

	The current view can be saved as a png file

[image: 2D visualisation of the 3D skin dose map data]
Figure 1: 2D visualisation of the 3D data

[image: 2D visualisation of the 3D skin dose map including phantom region overlay]
Figure 2: Phantom region overlay

3D visualisation

This is a 3D view of the phantom that was used for the calculations, with the
skin dose map overlaid onto the surface. The 3D visualisation includes the
following features:

	Moving the mouse whilst holding down the left-hand mouse button rotates the
3D model

	Using the mouse wheel zooms in and out

	A simple 3D model of a person is displayed in the bottom left corner. This is
to enable the viewer to orientate themselves when viewing the 3D skin dose
map

	The current view can be saved as a png file

[image: 3D visualisation of the skin dose map data]
Figure 3: 3D visualisation of the data

[image: Colour scale choices]
Figure 4: Colour scale choices

Skin dose map settings

There are two skin dose map options that can be set by an OpenREM
administrator via the Skin dose map settings option in the Config menu:

	Enable skin dose maps

	Calculate skin dose maps on import

The first of these sets whether skin dose map data is calculated, and also
switches the display of skin dose maps on or off. The second option controls
whether the skin dose map data is calculated at the point when a new study is
imported into OpenREM.

When skin dose maps are enabled:

	When a user views the details of a fluoroscopy study OpenREM looks for a skin
dose map pickle file on the OpenREM server in the skin_maps subfolder of
MEDIA_ROOT that corresponds to the study being viewed. If found, the skin
dose map data in the pickle file is loaded and displayed. The skin_maps
folder is created if it does not exist

	If a pickle file is not found then OpenREM calculates skin dose map data.
These calculations can take some time. They are carried out in the
background: an animated graphic is shown during the calculations. On
successful calculation of the data the skin dose map is displayed. A pickle
file containing the data is saved in the server’s skin_maps subfolder of
MEDIA_ROOT. The file name is of the form skin_map_XXXX.p, where
XXXX is the database primary key of the study

	For subsequent views of the same study the data in the pickle file is loaded,
rather than re-calculating the data, making the display of the skin dose map
much quicker

When calculation on import is enabled:

	OpenREM calculates the skin dose map data for a fluoroscopy study as soon as
it arrives in the system

	A pickle file containing the data is saved in the skin_maps subfolder of
MEDIA_ROOT

	Users viewing the details of a study won’t have to wait for the skin dose map
data to be calculated

Exporting data to openSkin

If skin dose maps are disabled the user you are presented with the option of exporting
the study data as a csv file for use with a stand-alone installation of
openSkin. Select the fluoroscopy study you wish to create the exposure
incidence map for and go to the detail view. Then click on the link to create
the OpenSkin export (figure 5).

[image: Export from OpenREM to openSkin]
Figure 5: Export from OpenREM to openSkin

Instructions for openSkin

Download the latest version as a zip file from openSkin downloads [http://bitbucket.org/openskin/openskin/downloads]. At the
time of release for OpenREM 0.7.0 the current openSkin beta was dated 14th
September 2016. The application referred to here will only work on Windows.

	Extract the contents of the zip file into a folder on your computer and run
the openSkin.exe executable

	Choose a phantom type: 3D or flat. See phantom design [http://bitbucket.org/openskin/openskin/wiki/Phantom%20design] for details

	Select the source csv file - this should be the one exported from OpenREM

	Select the output folder - this should already exist as it can’t be created
in the dialogue

	Wait! Depending on the number of events in the export and the power of your
machine, this can take a few minutes

Two files will be produced - a textfile called skin_dose_results.txt and a
small image called skin_dose_map.png

Results text file

It should look something like this:

File created : 04/21/15 17:42:45
Data file : C:/Users/[...]/exports-2015-04-21-OpenSkinExport20150421-162805246134.csv
Phantom : 90.0x70.0 3d phantom
Peak dose (Gy) : 0.50844405521
Cells > 3 Gy : 0
Cells > 5 Gy : 0
Cells > 10 Gy : 0

The peak dose is the peak incident dose delivered to any one-cm-square area. If
any of these 1 cm2 areas (referred to as cells) are above 3 Gy, then
the number of cells in this category, or the two higher dose categories, are
listed in the table accordingly.

Incidence map image file

The image file will be a small 70x90 px PNG image if you used the 3D phantom,
or 150 x 50 px PNG if you used the 2D phantom. With both, the head end of the
table is on the left.

The image is scaled so that black is 0 Gy and white is 10 Gy. For most studies,
this results in an incidence map that is largely black. However, if you use
GIMP [http://www.gimp.org/] or ImageJ [http://imagej.nih.gov/ij/download.html] or similar to increase the contrast, you will find that
the required map is there.

A native and ‘colour equalised’ version of the same export are shown below:

[image: OpenSkin incidence map, unscaled]
[image: OpenSkin incidence map, scaled]

Limitations

Skin dose map calculations do not currently work for all systems. Siemens Artis
Zee data is known to work. If skin dose maps do not work for your systems then
please let us know via the OpenREM Google Group [http://groups.google.com/forum/#!forum/openrem].

openSkin [http://bitbucket.org/openskin/openskin] is yet to be validated independently - if this is something you
want to do, please do go ahead and feed back your findings to Jonathan Cole at
jacole [http://bitbucket.org/jacole/].

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Exporting study information

Exporting to csv and xlsx sheets

If you are logged in as a user in the exportgroup or the admingroup,
the export links will be available near the top of the modality filter pages
in the OpenREM interface. The following exports are currently available (version 0.5.0)

	CT basic, single sheet csv

	CT advanced, XLSX muliple-sheets

	Fluoroscopy basic, single sheet csv

	Mammography, single sheet csv

	Mammography NHSBSP, single sheet csv designed to satisfy NHSPSB reporting

	Radiographic, single sheet csv

	Radiographic, XLSX multiple sheets

For CT and radiographic, the XLSX export has multiple sheets. The first sheet contains a
summary of all the study descriptions, requested procedures and series
protocol names contained in the export:

[image: CT export front sheet]
This information is useful for seeing what data is in the spreadsheet, and
can also be used to prioritise which studies or protocols to analyse based on
frequency.

The second sheet of the exported file lists all the studies, with each study
taking one line and each series in the study displayed in the columns to the right.

[image: CT export all data sheet]
The remainder of the file has one sheet per series protocol name. Each series
is listed one per line. If a single study
has more than one series with the same protocol name, then the same study
will appear on more than one line.

Clicking the link for an export redirects you to the Exports page, which
you can also get to using the link at the top right of the navigation bar:

[image: Exports list]
Whilst an export is being processed, it will be listed in the first table
at the top. The current status is displayed to indicate export progress.
If an export gets stuck for whatever reason, you may be able to abort the
process by clicking the ‘Abort’ button. However this does not always cause
an active export to terminate - you may find it completes anyway!

Completed exports are then listed in the second table, with a link to
download the csv or xlsx file.

When the export is no longer needed, it can be deleted from the server
by ticking the delete checkbox and clicking the delete button at the bottom:

[image: Deleting exports]

Warning

Large exports have been killed by the operating system due to running
out of memory - a 6500 CT exam xlsx export was killed after 3400
studies for example. This issue is being tracked as #116 [https://bitbucket.org/openrem/openrem/issue/116/] and will
hopefully be addressed in the next release. It is possible that if debug
mode is turned off then memory will be managed better, but I also need
to modify the xlsx export to make use of the memory optimisation mode in
xlsxwriter.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

OpenREM administration

Contents:

	Deleting studies

	Adding patient size information from csv using the web interface
	Uploading patient size data

	Importing the size data to the database

	Reviewing previous imports

	Deleting import logs

	Adding patient size information from csv using the command line

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	OpenREM administration

Deleting studies

New in 0.4.0

If you log in as a user that is in the admingroup, then an extra column is appended in
the filtered view tables to allow studies to be deleted:

[image: Deleting studies]
Clicking on delete takes you to a confirmation page before the delete takes place.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	OpenREM administration

Adding patient size information from csv using the web interface

Contents

	Adding patient size information from csv using the web interface
	Uploading patient size data

	Importing the size data to the database

	Reviewing previous imports

	Deleting import logs

	Adding patient size information from csv using the command line

Uploading patient size data

If you log in as a user that is in the admingroup, then a menu is
available at the right hand end of the navigation bar:

[image: Admin import patient size data menu]
The first option takes you to a page where you can upload a csv file
containing details of the patient height and weight, plus either the
accession number or the Study Instance UID.

[image: Uploading CSV files containing patient size information]
[image: Upload patient size csv file button]
The csv file needs to have at least the required columns. Additional columns
will be ignored. If your source of patient size data does not have either the
height or the weight column, simply add a new empty column with just the title
in the first row.

When you have selected the csv file, press the button to upload it.

Importing the size data to the database

On the next page select the column header that corresponds to each of the
head, weight and ID fields. Also select whether the ID field is an Accession number
or a Study UID:

When the column headers are selected, click the ‘Process the data’ button.

[image: Selecting header information]
The progress of the import is then reported on the patient size imports page:

[image: Patient size importing]
During the import, it is possible to abort the process by clicking the button
seen in the image above. The log file is available from the completed
table whether it completed or not - there is no indication that the import
was aborted.

As soon as the import is complete, the source csv file is deleted from the
server.

Reviewing previous imports

After an import is complete, it is listed in the completed import tasks
table. You can also get to this page from the Admin menu:

[image: Imports link]
For each import, there is a link to the logfile, which looks something like this.
With this import accession numbers weren’t available so the patient size
information was matched to the study instance UID:

[image: Size import logs]

Deleting import logs

The completed import tasks table also has a delete check box against each
record and a delete button at the bottom. The csv file originally imported
has already been deleted - this delete function is to remove the record
of the import and the log file associated with it from the database/disk.

Adding patient size information from csv using the command line

Usage:

openrem_ptsizecsv.py [-h] [-u] [-v] csvfile id height weight

	-h, --help

	Print the help text.

	-u, --si-uid

	Use Study Instance UID instead of Accession Number.

	-v, --verbose

	New in 0.3.7 Print to the standard output the success or otherwise of inserting each value.

	csvfile

	csv file containing the height and/or weight information and study identifier.
Other columns will be ignored. Use quotes if the filepath has spaces.

	id

	Column title for the accession number or study instance UID. Use quotes
if the title has spaces.

	height

	Column title for the patient height (DICOM size) - if this information
is missing simply add a blank column with a suitable title. Use quotes
if the title has spaces.

	weight

	Column title for the patient weight - if this information is missing
simply add a blank column with a suitable title. Use quotes if the title
has spaces.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Troubleshooting

Server 500 errors

Turn on debug mode

Locate and edit your local_settings file

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/openremproject/local_settings.py

	Other linux: /usr/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Linux virtualenv: lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Windows: C:\Python27\Lib\site-packages\openrem\openremproject\local_settings.py

	Windows virtualenv: Lib\site-packages\openrem\openremproject\local_settings.py

	Change the line:

DEBUG = True

	to:

DEBUG = True

This will render a debug report in the browser - usually revealing the problem.

Once the problem is fixed, change DEBUG to False, or comment it again using a #. If you leave debug mode
in place, the system is likely to run out of memory.

Query-retrieve issues

Refer to the Troubleshooting: openrem_qr.log documentation

OpenREM DICOM storage nodes

Refer to the Troubleshooting: openrem_store.log documentation

Log files

Log file location, naming and verbosity were configured in the local_settings.py configuration - see the
Log file configuration docs for details.

If the defaults have not been modified, then there will be three log files in your MEDIAROOT folder which you
configured at installation. See the install config section on Location for imports and exports for details.

The openrem.log has general logging information, the other two are specific to the DICOM store and DICOM
query-retrieve functions if you are making use of them.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Documentation for the OpenREM code

Contents:

	DICOM import modules
	RDSR module

	Mammography module

	CR and DR module

	CT non-standard modules

	Non-DICOM import modules
	Patient height and weight csv import module

	Export from database
	Multi-sheet Microsoft Excel XLSX exports

	Single sheet CSV exports

	Tools and helper modules
	OpenREM settings

	Get values

	Check if UID exists

	DICOM time and date values

	Test for QA or other non-patient related studies

	Models

	Filtering code

	Views

	Export Views

	Forms

	DICOM networking modules
	Query-retrieve module

	Adding new charts
	Additions to models.py

	Additions to forms.py

	Additions to views.py

	Additions to displaychartoptions.html

	Additions to rffiltered.html

	Additions to rfChartAjax.js

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Documentation for the OpenREM code

DICOM import modules

RDSR module

Ultimately this should be the only module required as it deals with all
Radiation Dose Structured Reports. Currently this has only been tested on
CT and fluoroscopy structured reports, but it also has the logic for
mammography structured reports if they start to appear.

Mammography module

Mammography is interesting in that all the information required for dose
audit is contained in the image header, including patient ‘size’, ie thickness.
However the disadvantage over an RSDR is the requirement to process each
individual image rather than a single report for the study, which would
also capture any rejected images.

CR and DR module

In practice this is only useful for DR modalities, but most of them use the
CR IOD instead of the DX one, so both are catered for. This module makes use
of the image headers much like the mammography module.

CT non-standard modules

Initially only Philips CT dose report images are catered for. These have
all the information that could be derived from the images also held in
the DICOM header information, making harvesting relatively easy.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Documentation for the OpenREM code

Non-DICOM import modules

Patient height and weight csv import module

This module enables a csv file to be parsed and the height and weight information
extracted and added to existing studies in the OpenREM database. An example may be
a csv extract from a RIS or EPR system.

There needs to be a common unique identifier for the exam - currently this
is limited to accession number or study instance UID.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Documentation for the OpenREM code

Export from database

Multi-sheet Microsoft Excel XLSX exports

This export has a summary sheet of all the requested and performed
protocols and the series protocols. The next sheet has all studies on,
one study per line, with the series stretching off to the right. The
remaining sheets are specific to each series protocol, in alphabetical
order, with one series per line. If one study has three series with the
same protocol name, each one has a line of its own.

	
(task)remapp.exports.xlsx.ctxlsx

	

Single sheet CSV exports

Specialised csv exports - NHSBSP formatted mammography export

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Documentation for the OpenREM code

Tools and helper modules

OpenREM settings

Administrative module to define the name of the project and to add it to
the Python path

Get values

Tiny modules to reduce repetition in the main code when extracting
information from DICOM headers using pydicom.

	
remapp.tools.get_values.get_value_kw(tag, dataset)

	Get DICOM value by keyword reference.

	Parameters:	
	keyword (str.) – DICOM keyword, no spaces or plural as per dictionary.

	dataset (dataset) – The DICOM dataset containing the tag.

	Returns:	str. – value

	
remapp.tools.get_values.get_value_num(tag, dataset)

	Get DICOM value by tag group and element number.

Always use get_value_kw by preference for readability. This module can
be required when reading private elements.

	Parameters:	
	tag (hex) – DICOM group and element number as a single hexadecimal number (prefix 0x).

	dataset (dataset) – The DICOM dataset containing the tag.

	Returns:	str. – value

	
remapp.tools.get_values.get_seq_code_value(sequence, dataset)

	From a DICOM sequence, get the code value.

	Parameters:	
	sequence (DICOM keyword, no spaces or plural as per dictionary.) – DICOM sequence name.

	dataset (DICOM dataset) – The DICOM dataset containing the sequence.

	Returns:	int. – code value

	
remapp.tools.get_values.get_seq_code_meaning(sequence, dataset)

	From a DICOM sequence, get the code meaning.

	Parameters:	
	sequence (DICOM keyword, no spaces or plural as per dictionary.) – DICOM sequence name.

	dataset (DICOM dataset) – The DICOM dataset containing the sequence.

	Returns:	str. – code meaning

	
remapp.tools.get_values.get_or_create_cid(codevalue, codemeaning)

	Create a code_value code_meaning pair entry in the ContextID
table if it doesn’t already exist.

	Parameters:	
	codevalue (int.) – Code value as defined in the DICOM standard part 16

	codemeaning – Code meaning as defined in the DICOM standard part 16

	Returns:	ContextID entry for code value passed

	
remapp.tools.get_values.return_for_export(model, field)

	Prevent errors due to missing data in models
:param val: database field
:return: value or None

Check if UID exists

Small module to check if UID already exists in the database.

	
remapp.tools.check_uid.check_uid(uid, level='Study')

	Check if UID already exists in database.

	Parameters:	uid (str.) – Study UID.

	Returns:	1 if it does exist, 0 otherwise

DICOM time and date values

Module to convert betweeen DICOM and Python dates and times.

	
remapp.tools.dcmdatetime.get_date(tag, dataset)

	Get DICOM date string and return Python date.

	Parameters:	
	tag (str.) – DICOM keyword, no spaces or plural as per dictionary.

	dataset (dataset) – The DICOM dataset containing the tag.

	Returns:	Python date value

	
remapp.tools.dcmdatetime.get_time(tag, dataset)

	Get DICOM time string and return Python time.

	Parameters:	
	tag (str.) – DICOM keyword, no spaces or plural as per dictionary.

	dataset (dataset) – The DICOM dataset containing the tag.

	Returns:	python time value

	
remapp.tools.dcmdatetime.get_date_time(tag, dataset)

	Get DICOM date time string and return Python date time.

	Parameters:	
	tag (str.) – DICOM keyword, no spaces or plural as per dictionary.

	dataset (dataset) – The DICOM dataset containing the tag.

	Returns:	Python date time value

	
remapp.tools.dcmdatetime.make_date(dicomdate)

	Given a DICOM date, return a Python date.

	Parameters:	dicomdate (str.) – DICOM style date.

	Returns:	Python date value

	
remapp.tools.dcmdatetime.make_time(dicomtime)

	Given a DICOM time, return a Python time.

	Parameters:	dicomdate (str.) – DICOM style time.

	Returns:	Python time value

	
remapp.tools.dcmdatetime.make_date_time(dicomdatetime)

	Given a DICOM date time, return a Python date time.

	Parameters:	dicomdate (str.) – DICOM style date time.

	Returns:	Python date time value

	
remapp.tools.dcmdatetime.make_dcm_date(pythondate)

	Given a Python date, return a DICOM date
:param pythondate: Date
:type pythondate: Python date object
:returns: DICOM date as string

	
remapp.tools.dcmdatetime.make_dcm_date_range(date1=None, date2=None)

	Given one or two dates of the form yyyy-mm-dd, return a DICOM date range
:param: date1, date2: One or two yyyy-mm-dd dates
:type date1, date2: String
:returns: DICOM date range as string

Test for QA or other non-patient related studies

	
remapp.tools.not_patient_indicators.get_not_pt(dataset)

	Looks for indications that a study might be a test or QA study.

Some values that might indicate a study was for QA or similar purposes
are not recorded in the database, for example patient name. Therefore
this module attempts to find such indications and creates an xml
style string that can be recorded in the database.

	Parameters:	dataset (dataset) – The DICOM dataset.

	Returns:	str. – xml style string if any trigger values are found.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Documentation for the OpenREM code

Models

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Documentation for the OpenREM code

Filtering code

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Documentation for the OpenREM code

Views

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Documentation for the OpenREM code

Export Views

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Documentation for the OpenREM code

Forms

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Documentation for the OpenREM code

DICOM networking modules

Query-retrieve module

Descriptive text

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Documentation for the OpenREM code

Adding new charts

To add a new chart several files need to be updated:

	models.py

	forms.py

	views.py

	xxfiltered.html

	xxChartAjax.js

	displaychartoptions.html

Where xx is one of ct, dx, mg or rf

The additions to the files add:

	database fields in the user profile to control whether the new charts are plotted (models.py)

	new options on the chart plotting forms (forms.py, displaychartoptions.html)

	extra code to calculate the data for the new charts if they are switched on (views.py)

	a section of html and JavaScript to contain the charts (xxfiltered.html)

	a section of JavaScript to pass the data calculated by views.py to xxfiltered.html

The process is probably best illustrated with an example. What follows is a
description of how to add a new chart that displays study workload for
fluoroscopy, and a pie chart of study description frequency.

Additions to models.py

A field per chart needs to be added to the UserProfile section in
models.py to control whether the new charts should be plotted. There is a
section of this file that looks like the following:

plotCTAcquisitionMeanDLP = models.BooleanField(default=True)
plotCTAcquisitionMeanCTDI = models.BooleanField(default=True)
plotCTAcquisitionFreq = models.BooleanField(default=False)
plotCTStudyMeanDLP = models.BooleanField(default=True)
plotCTStudyFreq = models.BooleanField(default=False)
plotCTRequestMeanDLP = models.BooleanField(default=False)
plotCTRequestFreq = models.BooleanField(default=False)
plotCTStudyPerDayAndHour = models.BooleanField(default=False)
plotCTStudyMeanDLPOverTime = models.BooleanField(default=False)
plotCTStudyMeanDLPOverTimePeriod = models.CharField(max_length=6,
 choices=TIME_PERIOD,
 default=MONTHS)
plotCTInitialSortingChoice = models.CharField(max_length=4,
 choices=SORTING_CHOICES_CT,
 default=FREQ)

Two new lines needs to be added to this section, using appropriate names such
as:

plotRFStudyPerDayAndHour = models.BooleanField(default=False)
plotRFStudyFreq = models.BooleanField(default=False)

Adding new fields to models.py requires that a database migration is carried
out to add the fields to the database. This is done via the command line:

python manage.py makemigrations remapp
python manage.py migrate remapp

The first command should result in a response similar to:

Migrations for 'remapp':
 0004_auto_20160424_1116.py:
 - Add field plotRFAcquisitionCTDIOverTime to userprofile
 - Add field plotRFStudyFreq to userprofile

The second command should result in a response similar to:

Operations to perform:
 Apply all migrations: remapp
Running migrations:
 Rendering model states... DONE
 Applying remapp.0004_auto_20160424_1116... OK

That’s the end of the changes required in models.py

Additions to forms.py

Two additional lines need to be added to the XXChartOptionsForm and
XXChartOptionsDisplayForm methods in forms.py, where XX is one of
CT, DX, MG or RF.

For our new charts the following lines needs to be added to both
RFChartOptionsForm and RFChartOptionsDisplayForm:

plotRFStudyPerDayAndHour = forms.BooleanField(label='Study workload', required=False)
plotRFStudyFreq = forms.BooleanField(label='Study frequency', required=False)

In addition, a new method needs to be added so that the RF chart options are
shown when the user goes to Config -> Chart options:

class RFChartOptionsDisplayForm(forms.Form):
 plotRFStudyPerDayAndHour = forms.BooleanField(label='Study workload', required=False)
 plotRFStudyFreq = forms.BooleanField(label='Study frequency', required=False)

That’s the end of the changes required in forms.py

Additions to views.py

Four methods in this file need to be updated.

xx_summary_list_filter additions

Some additions need to be made to the xx_summary_list_filter method in
views.py, where xx is one of ct, dx, mg or rf. As we’re
adding new RF charts, we need to edit rf_summary_list_filter.

A section of this method examines the user’s chart plotting preferences. Code
must be added to include the new chart in these checks. An abbreviated version
of the section is shown below.

Obtain the chart options from the request
chart_options_form = RFChartOptionsForm(request.GET)
Check whether the form data is valid
if chart_options_form.is_valid():
 # Use the form data if the user clicked on the submit button
 if "submit" in request.GET:
 # process the data in form.cleaned_data as required
 user_profile.plotCharts = chart_options_form.cleaned_data['plotCharts']
 if median_available:
 user_profile.plotAverageChoice = chart_options_form.cleaned_data['plotMeanMedianOrBoth']
 user_profile.save()

 else:
 form_data = {'plotCharts': user_profile.plotCharts,
 'plotMeanMedianOrBoth': user_profile.plotAverageChoice}
 chart_options_form = RFChartOptionsForm(form_data)

Two new lines needs to be inserted into the if and else sections for the
new chart:

Obtain the chart options from the request
chart_options_form = RFChartOptionsForm(request.GET)
Check whether the form data is valid
if chart_options_form.is_valid():
 # Use the form data if the user clicked on the submit button
 if "submit" in request.GET:
 # process the data in form.cleaned_data as required
 user_profile.plotCharts = chart_options_form.cleaned_data['plotCharts']
 user_profile.plotRFStudyPerDayAndHour = chart_options_form.cleaned_data['plotRFStudyPerDayAndHour']
 user_profile.plotRFStudyFreq = chart_options_form.cleaned_data['plotRFStudyFreq']
 if median_available:
 user_profile.plotAverageChoice = chart_options_form.cleaned_data['plotMeanMedianOrBoth']
 user_profile.save()

 else:
 form_data = {'plotCharts': user_profile.plotCharts,
 'plotRFStudyPerDayAndHour': user_profile.plotRFStudyPerDayAndHour,
 'plotRFStudyFreq': user_profile.plotRFStudyFreq,
 'plotMeanMedianOrBoth': user_profile.plotAverageChoice}
 chart_options_form = RFChartOptionsForm(form_data)

xx_summary_chart_data additions

The return_structure variable needs the new user_profile fields adding.

Before:

return_structure =\
 rf_plot_calculations(f, request_results, median_available, user_profile.plotAverageChoice,
 user_profile.plotSeriesPerSystem, user_profile.plotHistogramBins,
 user_profile.plotHistograms)

After:

return_structure =\
 rf_plot_calculations(f, request_results, median_available, user_profile.plotAverageChoice,
 user_profile.plotSeriesPerSystem, user_profile.plotHistogramBins,
 user_profile.plotRFStudyPerDayAndHour, user_profile.plotRFStudyFreq,
 user_profile.plotHistograms)

xx_plot_calculations additions

Two items needs to be added to this method’s parameters.

Before:

def rf_plot_calculations(f, request_results, median_available, plot_average_choice, plot_series_per_systems,
 plot_histogram_bins, plot_histograms):

After:

def rf_plot_calculations(f, request_results, median_available, plot_average_choice, plot_series_per_systems,
 plot_histogram_bins, plot_study_per_day_and_hour, plot_study_freq, plot_histograms):

Our new charts makes use of study_events (rather than acquisition_events
or request_events). We therefore need to ensure that study_events are
available if the user has chosen to show the new chart.

After additions:

if plot_study_per_day_and_hour:
 study_events = f.qs

We now need to add code that will calculate the data for the new charts. This
uses one of the methods in the chart_functions.py file, located in the
interface folder of the OpenREM project.

if plot_study_per_day_and_hour:
 result = workload_chart_data(study_events)
 return_structure['studiesPerHourInWeekdays'] = result['workload']

if plot_study_freq:
 result = average_chart_inc_histogram_data(study_events,
 'generalequipmentmoduleattr__unique_equipment_name_id__display_name',
 'study_description',
 'projectionxrayradiationdose__accumxraydose__accumintegratedprojradiogdose__dose_area_product_total',
 1000000,
 plot_study_dap, plot_study_freq,
 plot_series_per_systems, plot_average_choice,
 median_available, plot_histogram_bins,
 calculate_histograms=plot_histograms)

 return_structure['studySystemList'] = result['system_list']
 return_structure['studyNameList'] = result['series_names']
 return_structure['studySummary'] = result['summary']

The data in return_structure will now be available to the browser via
JavaScript, and can be used to populate the charts themselves.

chart_options_view additions

The RF options form need to be imported

Before:

from remapp.forms import GeneralChartOptionsDisplayForm, DXChartOptionsDisplayForm, CTChartOptionsDisplayForm

After:

from remapp.forms import GeneralChartOptionsDisplayForm, DXChartOptionsDisplayForm, CTChartOptionsDisplayForm,\
 RFChartOptionsDisplayForm

The RF form items need to be included

Before (abbreviated):

if request.method == 'POST':
 general_form = GeneralChartOptionsDisplayForm(request.POST)
 ct_form = CTChartOptionsDisplayForm(request.POST)
 dx_form = DXChartOptionsDisplayForm(request.POST)
 if general_form.is_valid() and ct_form.is_valid() and dx_form.is_valid() and rf_form.is_valid():
 try:
 # See if the user has plot settings in userprofile
 user_profile = request.user.userprofile
 except:
 # Create a default userprofile for the user if one doesn't exist
 create_user_profile(sender=request.user, instance=request.user, created=True)
 user_profile = request.user.userprofile

 user_profile.plotCharts = general_form.cleaned_data['plotCharts']
 ...
 ...
 user_profile.plotHistogramBins = general_form.cleaned_data['plotHistogramBins']

 user_profile.plotCTAcquisitionMeanDLP = ct_form.cleaned_data['plotCTAcquisitionMeanDLP']
 ...
 ...
 user_profile.plotCTInitialSortingChoice = ct_form.cleaned_data['plotCTInitialSortingChoice']

 user_profile.plotDXAcquisitionMeanDAP = dx_form.cleaned_data['plotDXAcquisitionMeanDAP']
 ...
 ...
 user_profile.plotDXInitialSortingChoice = dx_form.cleaned_data['plotDXInitialSortingChoice']

 user_profile.save()

 messages.success(request, "Chart options have been updated")

...
...

general_form_data = {'plotCharts': user_profile.plotCharts,
 'plotMeanMedianOrBoth': user_profile.plotAverageChoice,
 'plotInitialSortingDirection': user_profile.plotInitialSortingDirection,
 'plotSeriesPerSystem': user_profile.plotSeriesPerSystem,
 'plotHistogramBins': user_profile.plotHistogramBins}

ct_form_data = {'plotCTAcquisitionMeanDLP': user_profile.plotCTAcquisitionMeanDLP,
 ...
 ...
 'plotCTInitialSortingChoice': user_profile.plotCTInitialSortingChoice}

dx_form_data = {'plotDXAcquisitionMeanDAP': user_profile.plotDXAcquisitionMeanDAP,
 ...
 ...
 'plotDXInitialSortingChoice': user_profile.plotDXInitialSortingChoice}

general_chart_options_form = GeneralChartOptionsDisplayForm(general_form_data)
ct_chart_options_form = CTChartOptionsDisplayForm(ct_form_data)
dx_chart_options_form = DXChartOptionsDisplayForm(dx_form_data)

return_structure = {'admin': admin,
 'GeneralChartOptionsForm': general_chart_options_form,
 'CTChartOptionsForm': ct_chart_options_form,
 'DXChartOptionsForm': dx_chart_options_form
 }

After (abbreviated):

if request.method == 'POST':
 general_form = GeneralChartOptionsDisplayForm(request.POST)
 ct_form = CTChartOptionsDisplayForm(request.POST)
 dx_form = DXChartOptionsDisplayForm(request.POST)
 rf_form = RFChartOptionsDisplayForm(request.POST)
 if general_form.is_valid() and ct_form.is_valid() and dx_form.is_valid() and rf_form.is_valid():
 try:
 # See if the user has plot settings in userprofile
 user_profile = request.user.userprofile
 except:
 # Create a default userprofile for the user if one doesn't exist
 create_user_profile(sender=request.user, instance=request.user, created=True)
 user_profile = request.user.userprofile

 user_profile.plotCharts = general_form.cleaned_data['plotCharts']
 ...
 ...
 user_profile.plotHistogramBins = general_form.cleaned_data['plotHistogramBins']

 user_profile.plotCTAcquisitionMeanDLP = ct_form.cleaned_data['plotCTAcquisitionMeanDLP']
 ...
 ...
 user_profile.plotCTInitialSortingChoice = ct_form.cleaned_data['plotCTInitialSortingChoice']

 user_profile.plotDXAcquisitionMeanDAP = dx_form.cleaned_data['plotDXAcquisitionMeanDAP']
 ...
 ...
 user_profile.plotDXInitialSortingChoice = dx_form.cleaned_data['plotDXInitialSortingChoice']

 user_profile.plotRFStudyPerDayAndHour = rf_form.cleaned_data['plotRFStudyPerDayAndHour']
 user_profile.plotRFStudyFreq = rf_form.cleaned_data['plotRFStudyFreq']

 user_profile.save()

 messages.success(request, "Chart options have been updated")

...
...

general_form_data = {'plotCharts': user_profile.plotCharts,
 ...
 ...
 'plotHistogramBins': user_profile.plotHistogramBins}

ct_form_data = {'plotCTAcquisitionMeanDLP': user_profile.plotCTAcquisitionMeanDLP,
 ...
 ...
 'plotCTInitialSortingChoice': user_profile.plotCTInitialSortingChoice}

dx_form_data = {'plotDXAcquisitionMeanDAP': user_profile.plotDXAcquisitionMeanDAP,
 ...
 ...
 'plotDXInitialSortingChoice': user_profile.plotDXInitialSortingChoice}

rf_form_data = {'plotDXStudyPerDayAndHour': user_profile.plotDXStudyPerDayAndHour,
 'plotRFStudyFreq': user_profile.plotRFStudyFreq}

general_chart_options_form = GeneralChartOptionsDisplayForm(general_form_data)
ct_chart_options_form = CTChartOptionsDisplayForm(ct_form_data)
dx_chart_options_form = DXChartOptionsDisplayForm(dx_form_data)
rf_chart_options_form = RFChartOptionsDisplayForm(rf_form_data)

return_structure = {'admin': admin,
 'GeneralChartOptionsForm': general_chart_options_form,
 'CTChartOptionsForm': ct_chart_options_form,
 'DXChartOptionsForm': dx_chart_options_form,
 'RFChartOptionsForm': rf_chart_options_form,
 }

Additions to displaychartoptions.html

A new div needs to be added for the fluoroscopy chart options:

<div class="panel-heading">
 <h3 class="panel-title">Fluoroscopy chart options</h3>
</div>
<div class="panel-body">
 <table>
 {% csrf_token %}
 {{ RFChartOptionsForm }}
 </table>
 <input class="btn btn-default" name="submit" type="submit" />
</div>

Additions to rffiltered.html

A section of this file sets a JavaScript variable per chart. Two new ones needs
to be added.

Additions:

{% if request.user.userprofile.plotRFStudyPerDayAndHour %}
 <script>
 var plotRFStudyPerDayAndHour = true;
 result = chartWorkload('piechartStudyWorkloadDIV', 'Studies');
 </script>
{% endif %}

{% if request.user.userprofile.plotRFStudyFreq %}
 <script>
 var plotRFStudyFreq = true;
 var urlStartStudy = '/openrem/rf/?{% for field in filter.form %}{% if field.name != 'study_description' and field.name != 'o' and field.value %}&{{ field.name }}={{ field.value }}{% endif %}{% endfor %}&study_description=';
 result = chartFrequency('piechartStudyDIV', 'Study description frequency');
 </script>
{% endif %}

A second section of code needs to be added to rffiltered.html to include a
DIV for the new charts:

{% if request.user.userprofile.plotRFStudyPerDayAndHour %}
 <!-- HTML to include div container for study workload -->

 <script>
 $(window).resize(function() {
 chartSetExportSize('piechartStudyWorkloadDIV');
 fitChartToDiv('piechartStudyWorkloadDIV');
 });
 </script>

 <div class="panel-group" id="accordion5">
 <div class="panel panel-default">
 <div class="panel-heading">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordion5" href="#collapseStudyWorkloadPieChart" onclick="setTimeout(function() {$(document).resize();}, 0);">
 Pie chart showing a breakdown of number of studies per weekday.

 </h4>
 </div>
 <div id="collapseStudyWorkloadPieChart" class="panel-collapse collapse">
 <div class="panel-body">
 <div id="piechartStudyWorkloadDIV" style="height: auto; margin: 0 0"></div>
 <p>Click on a segment to be taken to a pie chart showing the breakdown per hour for that weekday.</p>
 Toggle fullscreen
 </div>
 </div>
 </div>
 </div>
 <!-- End of HTML to include div container for studies per week day pie chart -->
{% endif %}

{% if request.user.userprofile.plotRFStudyFreq %}
 <!-- HTML to include div container for study name pie chart -->

 <script>
 $(window).resize(function() {
 chartSetExportSize('piechartStudyDIV');
 fitChartToDiv('piechartStudyDIV');
 });
 </script>

 <div class="panel-group" id="accordionPiechartStudy">
 <div class="panel panel-default">
 <div class="panel-heading">
 <h4 class="panel-title">
 <a data-toggle="collapse" data-parent="#accordionPiechartStudy" href="#collapseStudyPieChart" onclick="setTimeout(function() {$(document).resize();}, 0);">
 Pie chart showing a breakdown of study name frequency.

 </h4>
 </div>
 <div id="collapseStudyPieChart" class="panel-collapse collapse">
 <div class="panel-body">
 <div id="piechartStudyDIV" style="height: auto; margin: 0 0"></div>
 Toggle fullscreen
 </div>
 </div>
 </div>
 </div>
 <!-- End of HTML to include div container for study name pie chart -->
{% endif %}

Additions to rfChartAjax.js

This file needs to update the skeleton chart with the data that has been
provided by views.py. It does this via the appropriate routines contained
in the chartUpdateData.js file. In this case, updateWorkloadChart and
updateFrequencyChart:

// Study workload chart data
if(typeof plotRFStudyPerDayAndHour !== 'undefined') {
 updateWorkloadChart(json.studiesPerHourInWeekdays, 'piechartStudyWorkloadDIV', colour_scale);
}

// Study description frequency chart data start
if(typeof plotRFStudyFreq !== 'undefined') {
 updateFrequencyChart(json.studyNameList, json.studySystemList, json.studySummary, urlStartStudy, 'piechartStudyDIV', colour_scale);
}

That’s it - you should now have two new charts visible in the fluoroscopy
filtered page.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

Previous Release Notes and Change Log

Version history change log

	OpenREM version history

Release notes and upgrade instructions

Each release comes with specific upgrade instructions, so please follow
the links below for the appropriate version.

Version specific information

	Release Notes v0.6.0

	OpenREM Release Notes version 0.5.1

	OpenREM Release Notes version 0.5.0

	OpenREM Release Notes version 0.4.3

	OpenREM Release Notes version 0.4.2

	OpenREM Release Notes version 0.4.1

	OpenREM Release Notes version 0.4.0

Contributing authors

Many people have contributed to OpenREM - either with code, documentation, bugs, examples or ideas, including:

	Elly Castellano

	Jonathan Cole [https://bitbucket.org/jacole]

	Daniel Gordon [https://bitbucket.org/dan_gordon/]

	Hamid Khosravi [https://bitbucket.org/hrkhosravi/]

	Laurence King

	Eivind Larsen [https://bitbucket.org/leivind]

	John Loveland [https://bitbucket.org/JLMPO/]

	Ed McDonagh [https://bitbucket.org/edmcdonagh]

	David Platten [https://bitbucket.org/dplatten]

	Erik-Jan Rijkhorst

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Previous Release Notes and Change Log

OpenREM version history

0.7.1 (2016-06-10)

	#403 [https://bitbucket.org/openrem/openrem/issue/403/] Now deals with PersonName fields with latin-1 extended characters correctly

	#402 [https://bitbucket.org/openrem/openrem/issue/402/] Skin dose map data pickle files saved using gzip compression to save space

	#401 [https://bitbucket.org/openrem/openrem/issue/401/] Updated skin dose map documentation to say it won’t be in this release

	#400 [https://bitbucket.org/openrem/openrem/issue/400/] Strings are encoded as UTF-8 before being hashed to prevent errors with non-ASCII characters

	#399 [https://bitbucket.org/openrem/openrem/issue/399/] Migration file brought up to date for 0.6 to 0.7 upgrades

	#398 [https://bitbucket.org/openrem/openrem/issue/398/] Skin exposure maps are now stored in folders (feature postponed for future release)

	#397 [https://bitbucket.org/openrem/openrem/issue/397/] Skin exposure maps no longer available until orientation errors are fixed

	#396 [https://bitbucket.org/openrem/openrem/issue/396/] Charts: zooming on bar charts of average value vs. category now works

	#395 [https://bitbucket.org/openrem/openrem/issue/395/] Docs: offline Windows install instructions created, plus offline upgrade instructions

	#394 [https://bitbucket.org/openrem/openrem/issue/394/] Charts: made charts resize to fit containing div when browser is resized

	#392 [https://bitbucket.org/openrem/openrem/issue/392/] Charts: normalised histogram tooltip now correctly reports frequency

	#391 [https://bitbucket.org/openrem/openrem/issue/391/] Basic troubleshooting is now documented

	#390 [https://bitbucket.org/openrem/openrem/issue/390/] Charts: mammography and fluoroscopy charts added

	#389 [https://bitbucket.org/openrem/openrem/issue/389/] Charts: series without a name are now plotted under the name of Blank rather than not being plotted at all

	#387 [https://bitbucket.org/openrem/openrem/issue/387/] Added laterality to mammography exports

	#385 [https://bitbucket.org/openrem/openrem/issue/385/] Fixed issue with non-ASCII letters in RDSR sequence TextValue fields

	#384 [https://bitbucket.org/openrem/openrem/issue/384/] Fluoro exports for OpenSkin only consider copper filters now

	#383 [https://bitbucket.org/openrem/openrem/issue/383/] Refreshed settings.py to django 1.8 including updating template settings and TEMPLATE_CONTEXT_PROCESSORS

	#380 [https://bitbucket.org/openrem/openrem/issue/380/] Tube current now extracted from Siemens Intevo RDSR despite non-conformance

	#379 [https://bitbucket.org/openrem/openrem/issue/379/] Exposure time now populated for fluoro if not supplied by RDSR

	#378 [https://bitbucket.org/openrem/openrem/issue/378/] The display name of multiple systems can now be updated together using a single new name

	#376 [https://bitbucket.org/openrem/openrem/issue/376/] Corrected an ill-advised model change

	#374 [https://bitbucket.org/openrem/openrem/issue/374/] CTDIw phantom size now displayed in CT detail view

	#373 [https://bitbucket.org/openrem/openrem/issue/373/] Charts in some releases used GT rather than greater than or equal to for start date, now fixed

	#372 [https://bitbucket.org/openrem/openrem/issue/372/] Mammography studies now record an accumulated AGD per breast. Existing joint accumulated AGD values won’t be
changed. Ordering by Accumulated AGD now creates an entry per accumulated AGD, one per breast

	#371 [https://bitbucket.org/openrem/openrem/issue/371/] Mammo RDSR generates average mA where not recorded, mammo image populates mA

	#370 [https://bitbucket.org/openrem/openrem/issue/370/] Added study description to mammography export

	#369 [https://bitbucket.org/openrem/openrem/issue/369/] Bi-plane fluoroscopy studies now export correctly

	#368 [https://bitbucket.org/openrem/openrem/issue/368/] Mammo RDSR now imports correctly

	#365 [https://bitbucket.org/openrem/openrem/issue/365/] Tube filtration is now displayed in the RF detail view

	#364 [https://bitbucket.org/openrem/openrem/issue/364/] Philips Allura fluorscopy RDSRs now import correctly

	#362 [https://bitbucket.org/openrem/openrem/issue/362/] Display of RF where bi-plane RDSRs have been imported no longer crash the interface

	#360 [https://bitbucket.org/openrem/openrem/issue/360/] Charts: saving data from average data charts as csv or xls now includes frequency values

	#359 [https://bitbucket.org/openrem/openrem/issue/359/] Added missing ‘y’ to query retrieve command line help

	#358 [https://bitbucket.org/openrem/openrem/issue/358/] Charts: chart sorting links and instructions now hidden when viewing histograms

	#357 [https://bitbucket.org/openrem/openrem/issue/357/] Charts: button to return from histogram now displays the name of the main chart

	#356 [https://bitbucket.org/openrem/openrem/issue/356/] Charts: histogram normalise button appears for all appropriate charts

	#355 [https://bitbucket.org/openrem/openrem/issue/355/] Charts: sorting now works as expected for plots with a series per system

	#352 [https://bitbucket.org/openrem/openrem/issue/352/] Fixed CT xlsx exports that had complete study data in each series protocol sheet (from earlier beta)

	#351 [https://bitbucket.org/openrem/openrem/issue/351/] Charts: simplified chart JavaScript and Python code

	#350 [https://bitbucket.org/openrem/openrem/issue/350/] DICOM networking documented for use with 3rd party store and advanced use with native

	#348 [https://bitbucket.org/openrem/openrem/issue/348/] Study delete confirmation page now displays total DAP for DX or CR radiographic studies

	#346 [https://bitbucket.org/openrem/openrem/issue/346/] Charts: exporting a chart as an image no longer requires an internet connection

	#345 [https://bitbucket.org/openrem/openrem/issue/345/] CSV size imports in cm are now stored as m in the database. Interface display of size corrected.

	#343 [https://bitbucket.org/openrem/openrem/issue/343/] Charts: user can now specify number of histogram bins in the range of 2 to 40

	#342 [https://bitbucket.org/openrem/openrem/issue/342/] Charts: improved the colours used for plotting chart data

	#340 [https://bitbucket.org/openrem/openrem/issue/340/] Fixed store failure to save due to illegal values in Philips private tags, improved exception code

	#339 [https://bitbucket.org/openrem/openrem/issue/339/] Improved extraction of requested procedure information for radiographic studies

	#338 [https://bitbucket.org/openrem/openrem/issue/338/] Fix Kodak illegally using comma in filter thickness values

	#335 [https://bitbucket.org/openrem/openrem/issue/335/] DICOM Store keep_alive and echo_scu functions now log correctly

	#334 [https://bitbucket.org/openrem/openrem/issue/334/] Fixed issue with tasks needing to be explicitly named

	#333 [https://bitbucket.org/openrem/openrem/issue/333/] Fixed StoreSCP not starting in beta 11 error

	#332 [https://bitbucket.org/openrem/openrem/issue/332/] Charts: some charts can now be plotted with a series per x-ray system

	#331 [https://bitbucket.org/openrem/openrem/issue/331/] Keep_alive tasks are now discarded if not executed, so don’t pile up

	#329 [https://bitbucket.org/openrem/openrem/issue/329/] All existing logging is now done via the same log files

	#328 [https://bitbucket.org/openrem/openrem/issue/328/] Store SCP no longer uses Celery tasks

	#327 [https://bitbucket.org/openrem/openrem/issue/327/] Celery workers now only take one task at a time

	#325 [https://bitbucket.org/openrem/openrem/issue/325/] Charts: switching charts off now leaves the user on the same page, rather than going to the home page

	#324 [https://bitbucket.org/openrem/openrem/issue/324/] Charts: forced chart tooltip background to be opaque to make reading the text easier

	#320 [https://bitbucket.org/openrem/openrem/issue/320/] The week now begins on Monday rather than Sunday on date form fields

	#316 [https://bitbucket.org/openrem/openrem/issue/316/] Query retrieve function can now exclude and include based on strings entered

	#315 [https://bitbucket.org/openrem/openrem/issue/315/] Charts: made size of exported chart graphics follow the browser window size

	#314 [https://bitbucket.org/openrem/openrem/issue/314/] One version number declaration now used for distribute, docs and interface

	#313 [https://bitbucket.org/openrem/openrem/issue/313/] Replaced non-working function with code to extract SeriesDescription etc in query response message

	#312 [https://bitbucket.org/openrem/openrem/issue/312/] Display names are now grouped by modality

	#311 [https://bitbucket.org/openrem/openrem/issue/311/] Queries are deleted from database after a successful C-Move

	#310 [https://bitbucket.org/openrem/openrem/issue/310/] Series level QR feedback now presented. Any further would require improvements in pynetdicom

	#309 [https://bitbucket.org/openrem/openrem/issue/309/] StoreSCP now deals safely with incoming files with additional transfer syntax tag

	#308 [https://bitbucket.org/openrem/openrem/issue/308/] Secondary capture images that don’t have the manufacturer field no longer crash the StoreSCP function

	#306 [https://bitbucket.org/openrem/openrem/issue/306/] Charts: added a button to each chart to toggle full-screen display

	#305 [https://bitbucket.org/openrem/openrem/issue/305/] Added links to documentation throughout the web interface

	#304 [https://bitbucket.org/openrem/openrem/issue/304/] Date of birth is now included in all exports that have either patient name or ID included

	#303 [https://bitbucket.org/openrem/openrem/issue/303/] Fixed a typo in 0.6.0 documents relating to the storescp command

	#302 [https://bitbucket.org/openrem/openrem/issue/302/] Improved handling of Philips Dose Info objects when series information sequence has UN value representation

	#301 [https://bitbucket.org/openrem/openrem/issue/301/] Charts: fixed bug that could stop average kVp and mAs radiographic plots from working

	#300 [https://bitbucket.org/openrem/openrem/issue/300/] Calling AE Title for Query Retrieve SCU is now configured not hardcoded

	#299 [https://bitbucket.org/openrem/openrem/issue/299/] Hash of MultiValued DICOM elements now works

	#298 [https://bitbucket.org/openrem/openrem/issue/298/] Added ordering by accumulated AGD for mammographic studies

	#297 [https://bitbucket.org/openrem/openrem/issue/297/] Fixed ordering by Total DAP for radiographic studies

	#296 [https://bitbucket.org/openrem/openrem/issue/296/] StoreSCP now logs an error message and continues if incoming file has problems

	#295 [https://bitbucket.org/openrem/openrem/issue/295/] Charts: fixed bug that arose on non-PostgreSQL databases

	#294 [https://bitbucket.org/openrem/openrem/issue/294/] Harmonised time display between filter list and detail view, both to HH:mm

	#292 [https://bitbucket.org/openrem/openrem/issue/292/] Added keep-alive and auto-start to DICOM stores

	#291 [https://bitbucket.org/openrem/openrem/issue/291/] Charts: fixed issue with CTDI and DLP not showing correct drilldown data

	#290 [https://bitbucket.org/openrem/openrem/issue/290/] Added new tables and fields to migration file, uses #288 [https://bitbucket.org/openrem/openrem/issue/288/] and median code from #241 [https://bitbucket.org/openrem/openrem/issue/241/]

	#289 [https://bitbucket.org/openrem/openrem/issue/289/] Crispy forms added into the requires file

	#288 [https://bitbucket.org/openrem/openrem/issue/288/] Added device name hashes to migration file

	#286 [https://bitbucket.org/openrem/openrem/issue/286/] Increased granularity of permission groups

	#285 [https://bitbucket.org/openrem/openrem/issue/285/] Tidied up Options and Admin menus

	#284 [https://bitbucket.org/openrem/openrem/issue/284/] Fixed DICOM Query that looped if SCP respected ModalitiesInStudy

	#282 [https://bitbucket.org/openrem/openrem/issue/282/] Missing javascript file required for IE8 and below added

	#281 [https://bitbucket.org/openrem/openrem/issue/281/] Added check to import function to prevent extract failure

	#280 [https://bitbucket.org/openrem/openrem/issue/280/] Fixed typo in mammography export

	#279 [https://bitbucket.org/openrem/openrem/issue/279/] Charts: Fixed issue with median CTDI series from appearing

	#278 [https://bitbucket.org/openrem/openrem/issue/278/] Charts: Fixed javascript namespace pollution that caused links to fail

	#277 [https://bitbucket.org/openrem/openrem/issue/277/] Overhaul of acquisition level filters to get tooltip generated filters to follow through to export

	#276 [https://bitbucket.org/openrem/openrem/issue/276/] Unique fields cannot have unlimited length in MySQL - replaced with hash

	#274 [https://bitbucket.org/openrem/openrem/issue/274/] Charts: Fixed legend display issue

	#273 [https://bitbucket.org/openrem/openrem/issue/273/] Charts: Added plots of average kVp and mAs over time for DX

	#272 [https://bitbucket.org/openrem/openrem/issue/272/] Tweak to display of exam description for DX

	#271 [https://bitbucket.org/openrem/openrem/issue/271/] Fixed DX import failure where AcquisitionDate or AcquisitionTime are None

	#270 [https://bitbucket.org/openrem/openrem/issue/270/] Django 1.8 Admin site has a ‘view site’ link. Pointed it back to OpenREM

	#268 [https://bitbucket.org/openrem/openrem/issue/268/] Improved population of procedure_code_meaning for DX imports

	#266 [https://bitbucket.org/openrem/openrem/issue/266/] DICOM C-Store script added back in - largely redundant with web interface

	#265 [https://bitbucket.org/openrem/openrem/issue/265/] DICOM Store and Query Retrieve services documented

	#263 [https://bitbucket.org/openrem/openrem/issue/263/] Settings for keeping or deleting files once processed moved to database and web interface

	#262 [https://bitbucket.org/openrem/openrem/issue/262/] Dealt with issue where two exposures from the same study would race on import

	#260 [https://bitbucket.org/openrem/openrem/issue/260/] Fixed issue where import and export jobs would get stuck behind StoreSCP task in queue

	#259 [https://bitbucket.org/openrem/openrem/issue/259/] Link to manage users added to Admin menu

	#258 [https://bitbucket.org/openrem/openrem/issue/258/] Fixed DX import error where manufacturer or model name was not provided

	#257 [https://bitbucket.org/openrem/openrem/issue/257/] Documentation update

	#256 [https://bitbucket.org/openrem/openrem/issue/256/] Fixed errors with non-ASCII characters in imports and query-retrieve

	#255 [https://bitbucket.org/openrem/openrem/issue/255/] Charts: Small y-axis values on histograms are more visible when viewing full-screen

	#254 [https://bitbucket.org/openrem/openrem/issue/254/] Charts: Simplified chart data processing in the templates

	#253 [https://bitbucket.org/openrem/openrem/issue/253/] Charts: AJAX used to make pages responsive with large datasets when charts enabled

	#252 [https://bitbucket.org/openrem/openrem/issue/252/] Fixed duplicate entries in DX filtered data for studies with multiple exposures

	#248 [https://bitbucket.org/openrem/openrem/issue/248/] Charts: can now be ordered by frequency or alphabetically

	#247 [https://bitbucket.org/openrem/openrem/issue/247/] Fixed incorrect reference to manufacturer_model_name

	#246 [https://bitbucket.org/openrem/openrem/issue/246/] Charts: Added median data for PostgreSQL users

	#245 [https://bitbucket.org/openrem/openrem/issue/245/] Fixed error in csv DX export

	#244 [https://bitbucket.org/openrem/openrem/issue/244/] Fixed issue where scripts wouldn’t function after upgrade to Django 1.8

	#243 [https://bitbucket.org/openrem/openrem/issue/243/] Added distance related data to DX exports

	#242 [https://bitbucket.org/openrem/openrem/issue/242/] Distance source to patient now extracted from DX images

	#241 [https://bitbucket.org/openrem/openrem/issue/241/] Charts: Median values can be plotted for PostgreSQL users

	#240 [https://bitbucket.org/openrem/openrem/issue/240/] Charts: Improved DAP over time calculations

	#239 [https://bitbucket.org/openrem/openrem/issue/239/] Configurable equipment names to fix multiple sources with the same station name

	#237 [https://bitbucket.org/openrem/openrem/issue/237/] Charts: Tidied up plot data calculations in views.py

	#235 [https://bitbucket.org/openrem/openrem/issue/235/] Added patient sex to each of the exports

	#234 [https://bitbucket.org/openrem/openrem/issue/234/] Charts: Fixed error with datetime combine

	#232 [https://bitbucket.org/openrem/openrem/issue/232/] Charts: on or off displayed on the home page

	#231 [https://bitbucket.org/openrem/openrem/issue/231/] Charts: made links from requested procedure frequency plot respect the other filters

	#230 [https://bitbucket.org/openrem/openrem/issue/230/] Fixed error in OperatorsName field in DICOM extraction

	#229 [https://bitbucket.org/openrem/openrem/issue/229/] Charts: Added chart of DLP per requested procedure

	#223 [https://bitbucket.org/openrem/openrem/issue/223/] Charts: speed improvement for weekday charts

	#217 [https://bitbucket.org/openrem/openrem/issue/217/] Charts: Further code optimisation to speed up calculation time

	#207 [https://bitbucket.org/openrem/openrem/issue/207/] DICOM QR SCU now available from web interface

	#206 [https://bitbucket.org/openrem/openrem/issue/206/] DICOM Store SCP configuration now available from web interface

	#183 [https://bitbucket.org/openrem/openrem/issue/183/] Added options to store patient name and ID, and options to hash name, ID and accession number

	#171 [https://bitbucket.org/openrem/openrem/issue/171/] Root URL now resolves so /openrem is not necessary

	#151 [https://bitbucket.org/openrem/openrem/issue/151/] Suspected non-patient studies can now be filtered out

	#135 [https://bitbucket.org/openrem/openrem/issue/135/] GE Senographe DS now correctly records compression force in Newtons for new imports

	#120 [https://bitbucket.org/openrem/openrem/issue/120/] Improved testing of data existing for exports

	#118 [https://bitbucket.org/openrem/openrem/issue/118/] Upgraded to Django 1.8

	#70 [https://bitbucket.org/openrem/openrem/issue/70/] User is returned to the filtered view after deleting a study

	#61 [https://bitbucket.org/openrem/openrem/issue/61/] Skin dose maps for fluoroscopy systems can now be calculated and displayed

0.6.2 (2016-01-27)

	#347 [https://bitbucket.org/openrem/openrem/issue/347/] Django-filter v0.12 has minimum Django version of 1.8, fixed OpenREM 0.6.2 to max django-filter 0.11

	#341 [https://bitbucket.org/openrem/openrem/issue/341/] Changed references to the OpenSkin repository for 0.6 series.

0.6.1 (2015-10-30)

	#303 [https://bitbucket.org/openrem/openrem/issue/303/] Corrected name of Store SCP command in docs

0.6.0 (2015-05-14)

	#227 [https://bitbucket.org/openrem/openrem/issue/227/] Fixed import of RDSRs from Toshiba Cath Labs

	#226 [https://bitbucket.org/openrem/openrem/issue/226/] Charts: Updated Highcharts code and partially fixed issues with CTDIvol and DLP combined chart

	#225 [https://bitbucket.org/openrem/openrem/issue/225/] Charts: Added link from mAs and kVp histograms to associated data

	#224 [https://bitbucket.org/openrem/openrem/issue/224/] Charts: Added link from CTDIvol histograms to associated data

	#221 [https://bitbucket.org/openrem/openrem/issue/221/] Charts: Fixed issue where filters at acquisition event level were not adequately restricting the chart data

	#219 [https://bitbucket.org/openrem/openrem/issue/219/] Charts: Fixed issue where some charts showed data beyond the current filter

	#217 [https://bitbucket.org/openrem/openrem/issue/217/] Charts: Code optimised to speed up calculation time

	#216 [https://bitbucket.org/openrem/openrem/issue/216/] Fixed typo that prevented import of RSDR when DICOM store settings not present

	#215 [https://bitbucket.org/openrem/openrem/issue/215/] Charts: Fixed x-axis labels for mean dose over time charts

	#214 [https://bitbucket.org/openrem/openrem/issue/214/] Charts: Improved consistency of axis labels

	#213 [https://bitbucket.org/openrem/openrem/issue/213/] Fixed admin menu not working

	#212 [https://bitbucket.org/openrem/openrem/issue/212/] Charts: Created off-switch for charts

	#210 [https://bitbucket.org/openrem/openrem/issue/210/] OpenSkin exports documented

	#209 [https://bitbucket.org/openrem/openrem/issue/209/] Charts: Fixed server error when CT plots switched off and filter form submitted

	#208 [https://bitbucket.org/openrem/openrem/issue/208/] Charts: Fixed blank chart plotting options when clicking on histogram tooltip link

	#205 [https://bitbucket.org/openrem/openrem/issue/205/] Charts: Fixed issue of histogram tooltip links to data not working

	#204 [https://bitbucket.org/openrem/openrem/issue/204/] Charts: Fixed issue of not being able to export with the charts features added

	#203 [https://bitbucket.org/openrem/openrem/issue/203/] Charts: Fixed display of HTML in plots issue

	#202 [https://bitbucket.org/openrem/openrem/issue/202/] Charts: Added mean CTDIvol to charts

	#200 [https://bitbucket.org/openrem/openrem/issue/200/] Charts: Now exclude Philips Ingenuity SPRs from plots

	#196 [https://bitbucket.org/openrem/openrem/issue/196/] Added comments and entrance exposure data to DX export

	#195 [https://bitbucket.org/openrem/openrem/issue/195/] Fixed error with no users on fresh install

	#194 [https://bitbucket.org/openrem/openrem/issue/194/] Added more robust extraction of series description from DX

	#193 [https://bitbucket.org/openrem/openrem/issue/193/] Charts: Fixed reset of filters when moving between pages

	#192 [https://bitbucket.org/openrem/openrem/issue/192/] Created RF export for OpenSkin

	#191 [https://bitbucket.org/openrem/openrem/issue/191/] Charts: Factored out the javascript from the filtered.html files

	#190 [https://bitbucket.org/openrem/openrem/issue/190/] Charts: Added time period configuration to dose over time plots

	#189 [https://bitbucket.org/openrem/openrem/issue/189/] Charts: Fixed plotting of mean doses over time when frequency not plotted

	#187 [https://bitbucket.org/openrem/openrem/issue/187/] Charts: Merged the charts work into the main develop branch

	#186 [https://bitbucket.org/openrem/openrem/issue/186/] Fixed duplicate data in DX exports

	#179 [https://bitbucket.org/openrem/openrem/issue/179/] Charts: Added kVp and mAs plots for DX

	#177 [https://bitbucket.org/openrem/openrem/issue/177/] Charts: Fixed issue with date ranges for DX mean dose over time charts

	#176 [https://bitbucket.org/openrem/openrem/issue/176/] Charts: Added link to filtered dataset from mean dose over time charts

	#175 [https://bitbucket.org/openrem/openrem/issue/175/] Charts: Allowed configuration of the time period for mean dose trend charts to improve performance

	#174 [https://bitbucket.org/openrem/openrem/issue/174/] Charts: Fixed number of decimal places for mean DLP values

	#173 [https://bitbucket.org/openrem/openrem/issue/173/] Charts: Fixed plot of mean DLP over time y-axis issue

	#170 [https://bitbucket.org/openrem/openrem/issue/170/] Charts: Added plot of mean dose over time

	#169 [https://bitbucket.org/openrem/openrem/issue/169/] Charts: Improved chart colours

	#157 [https://bitbucket.org/openrem/openrem/issue/157/] Charts: Added chart showing number of studies per day of the week, then hour in the day

	#156 [https://bitbucket.org/openrem/openrem/issue/156/] Charts: Fixed issue with some protocols not being displayed

	#155 [https://bitbucket.org/openrem/openrem/issue/155/] Charts: Added chart showing relative frequency of protocols and study types

	#140 [https://bitbucket.org/openrem/openrem/issue/140/] Charts: Added configuration options

	#139 [https://bitbucket.org/openrem/openrem/issue/139/] Charts: Link to filtered dataset from histogram chart

	#138 [https://bitbucket.org/openrem/openrem/issue/138/] Charts: Number of datapoints displayed on tooltip

	#135 [https://bitbucket.org/openrem/openrem/issue/135/] Mammography compression force now only divides by 10 if model contains senograph ds Change in behaviour

	#133 [https://bitbucket.org/openrem/openrem/issue/133/] Documented installation of NumPy, initially for charts

	#41 [https://bitbucket.org/openrem/openrem/issue/41/] Preview of DICOM Store SCP now available

	#20 [https://bitbucket.org/openrem/openrem/issue/20/] Modality sections are now suppressed until populated

0.5.1 (2015-03-12)

	#184 [https://bitbucket.org/openrem/openrem/issue/184/] Documentation for 0.5.1

	#180 [https://bitbucket.org/openrem/openrem/issue/180/] Rename all reverse lookups as a result of #62 [https://bitbucket.org/openrem/openrem/issue/62/]

	#178 [https://bitbucket.org/openrem/openrem/issue/178/] Added documentation regarding backing up and restoring PostgreSQL OpenREM databases

	#172 [https://bitbucket.org/openrem/openrem/issue/172/] Revert all changes made to database so #62 [https://bitbucket.org/openrem/openrem/issue/62/] could take place first

	#165 [https://bitbucket.org/openrem/openrem/issue/165/] Extract height and weight from DX, height from RDSR, all if available

	#161 [https://bitbucket.org/openrem/openrem/issue/161/] Views and exports now look for accumulated data in the right table after changes in #159 [https://bitbucket.org/openrem/openrem/issue/159/] and #160 [https://bitbucket.org/openrem/openrem/issue/160/]

	#160 [https://bitbucket.org/openrem/openrem/issue/160/] Created the data migration to move all the DX accumulated data from TID 10004 to TID 10007

	#159 [https://bitbucket.org/openrem/openrem/issue/159/] Modified the DX import to populate TID 10007 rather than TID 10004. RDSR RF already populates both

	#158 [https://bitbucket.org/openrem/openrem/issue/158/] Demo website created by DJ Platten: http://demo.openrem.org/openrem

	#154 [https://bitbucket.org/openrem/openrem/issue/154/] Various decimal fields are defined with too few decimal places - all have now been extended.

	#153 [https://bitbucket.org/openrem/openrem/issue/153/] Changed home page and modality pages to have whole row clickable and highlighted

	#150 [https://bitbucket.org/openrem/openrem/issue/150/] DJ Platten has added Conquest configuration information

	#137 [https://bitbucket.org/openrem/openrem/issue/137/] Carestream DX multiple filter thickness values in a DS VR now extracted correctly

	#113 [https://bitbucket.org/openrem/openrem/issue/113/] Fixed and improved recording of grid information for mammo and DX and RDSR import routines

	#62 [https://bitbucket.org/openrem/openrem/issue/62/] Refactored all model names to be less than 39 characters and be in CamelCase to allow database migrations and
to come into line with PEP 8 naming conventions for classes.

0.5.0 (2014-11-19)

	Pull request from DJ Platten: Improved display of DX data and improved export of DX data

	#132 [https://bitbucket.org/openrem/openrem/issue/132/] Fixed mammo export error that slipped in before the first beta

	#130 [https://bitbucket.org/openrem/openrem/issue/130/] Only creates ExposureInuAs from Exposure if Exposure exists now

	#128 [https://bitbucket.org/openrem/openrem/issue/128/] Updated some non-core documentation that didn’t have the new local_settings.py reference or the new
openremproject folder name

	#127 [https://bitbucket.org/openrem/openrem/issue/127/] DX IOD studies with image view populated failed to export due to lack of conversion to string

	#126 [https://bitbucket.org/openrem/openrem/issue/126/] Documentation created for the radiographic functionality

	#125 [https://bitbucket.org/openrem/openrem/issue/125/] Fixes issue where Hologic tomo projection objects were dropped as they have the same event time as the 2D element

	#123 [https://bitbucket.org/openrem/openrem/issue/123/] Fixed issue where filters came through on export as lists rather than strings on some installs

	#122 [https://bitbucket.org/openrem/openrem/issue/122/] Exports of RF data should now be more useful when exporting to xlsx. Will need refinement in the future

	#26 [https://bitbucket.org/openrem/openrem/issue/26/] Extractors created for radiographic DICOM images. Contributed by DJ Platten

	#25 [https://bitbucket.org/openrem/openrem/issue/25/] Views and templates added for radiographic exposures - either from RDSRs or from images - see #26 [https://bitbucket.org/openrem/openrem/issue/26/].
Contributed by DJ Platten

	#9 [https://bitbucket.org/openrem/openrem/issue/9/] Import of *.dcm should now be available from Windows and Linux alike

0.4.3 (2014-10-01)

	#119 [https://bitbucket.org/openrem/openrem/issue/119/] Fixed issue where Celery didn’t work on Windows. Django project folder is now called openremproject instead of openrem

	#117 [https://bitbucket.org/openrem/openrem/issue/117/] Added Windows line endings to patient size import logs

	#113 [https://bitbucket.org/openrem/openrem/issue/113/] Fixed units spelling error in patient size import logs

	#112 [https://bitbucket.org/openrem/openrem/issue/112/] File system errors during imports and exports are now handled properly with tasks listed in error states on the summary pages

	#111 [https://bitbucket.org/openrem/openrem/issue/111/] Added abort function to patient size imports and study exports

	#110 [https://bitbucket.org/openrem/openrem/issue/110/] Converted exports to use the FileField handling for storage and access, plus modified folder structure.

	#109 [https://bitbucket.org/openrem/openrem/issue/109/] Added example MEDIA_ROOT path for Windows to the install docs

	#108 [https://bitbucket.org/openrem/openrem/issue/108/] Documented ownership issues between the webserver and Celery

	#107 [https://bitbucket.org/openrem/openrem/issue/107/] Documented process for upgrading to 0.4.2 before 0.4.3 for versions 0.3.9 or earlier

	#106 [https://bitbucket.org/openrem/openrem/issue/106/] Added the duration of export time to the exports table. Also added template formatting tag to convert seconds to natural time

	#105 [https://bitbucket.org/openrem/openrem/issue/105/] Fixed bug in Philips CT import where decimal.Decimal was not imported before being used in the age calculation

	#104 [https://bitbucket.org/openrem/openrem/issue/104/] Added documentation for the additional study export functions as a result of using Celery tasks in task #19 [https://bitbucket.org/openrem/openrem/issue/19/] as well as documentation for the code

	#103 [https://bitbucket.org/openrem/openrem/issue/103/] Added documentation for using the web import of patient size information as well as the new code

	#102 [https://bitbucket.org/openrem/openrem/issue/102/] Improved handling of attempts to process patient size files that have been deleted for when users go back in the browser after the process is finished

	#101 [https://bitbucket.org/openrem/openrem/issue/101/] Set the security of the new patient size imports to prevent users below admin level from using it

	#100 [https://bitbucket.org/openrem/openrem/issue/100/] Logging information for patient size imports was being written to the database - changed to write to file

	#99 [https://bitbucket.org/openrem/openrem/issue/99/] Method for importing remapp from scripts and for setting the DJANGO_SETTINGS_MODULE made more robust so that it should work out of the box on Windows, debian derivatives and virtualenvs

	#98 [https://bitbucket.org/openrem/openrem/issue/98/] Versions 0.4.0 to 0.4.2 had a settings.py.new file to avoid overwriting settings files on upgrades; renaming this file was missing from the installation documentation for new installs

	#97 [https://bitbucket.org/openrem/openrem/issue/97/] Changed the name of the export views file from ajaxviews as ajax wasn’t used in the end

	#96 [https://bitbucket.org/openrem/openrem/issue/96/] Changed mammo and fluoro filters to use named fields to avoid needing to use the full database path

	#93 [https://bitbucket.org/openrem/openrem/issue/93/] Set the security of the new exports to prevent users below export level from creating or downloading exports

	#92 [https://bitbucket.org/openrem/openrem/issue/92/] Add NHSBSP specific mammography csv export [https://bitbucket.org/jacole/openrem-visualisation/commits/0ee416511c847960523a6475ef33ac72#comment-1003330] from Jonathan Cole - with Celery

	#91 [https://bitbucket.org/openrem/openrem/issue/91/] Added documentation for Celery and RabbitMQ

	#90 [https://bitbucket.org/openrem/openrem/issue/90/] Added delete function for exports

	#89 [https://bitbucket.org/openrem/openrem/issue/89/] Added the Exports navigation item to all templates, limited to export or admin users

	#88 [https://bitbucket.org/openrem/openrem/issue/88/] Converted fluoroscopy objects to using the Celery task manager after starting with CT for #19 [https://bitbucket.org/openrem/openrem/issue/19/]

	#87 [https://bitbucket.org/openrem/openrem/issue/87/] Converted mammography objects to using the Celery task manager after starting with CT for #19 [https://bitbucket.org/openrem/openrem/issue/19/]

	#86 [https://bitbucket.org/openrem/openrem/issue/86/] Digital Breast Tomosynthesis systems have a projections object that for Hologic contains required dosimetry information

	#85 [https://bitbucket.org/openrem/openrem/issue/85/] Fix for bug introduced in #75 [https://bitbucket.org/openrem/openrem/issue/75/] where adaption of ptsize import for procedure import broke ptsize imports

	#74 [https://bitbucket.org/openrem/openrem/issue/74/] ‘Time since last study’ is now correct when daylight saving time kicks in

	#39 [https://bitbucket.org/openrem/openrem/issue/39/] Debug mode now defaults to False

	#21 [https://bitbucket.org/openrem/openrem/issue/21/] Height and weight data can now be imported through forms in the web interface

	#19 [https://bitbucket.org/openrem/openrem/issue/19/] Exports are now sent to a task manager instead of locking up the web interface

Reopened issue

	#9 [https://bitbucket.org/openrem/openrem/issue/9/] Issue tracking import using *.dcm style wildcards reopened as Windows cmd.exe shell doesn’t do wildcard expansion, so this will need to be handled by OpenREM in a future version

0.4.2 (2014-04-15)

	#83 [https://bitbucket.org/openrem/openrem/issue/83/] Fix for bug introduced in #73 [https://bitbucket.org/openrem/openrem/issue/73/] that prevents the import scripts from working.

0.4.1 (2014-04-15)

	#82 [https://bitbucket.org/openrem/openrem/issue/82/] Added instructions for adding users to the release notes

0.4.0 (2014-04-15)

Note

	#64 [https://bitbucket.org/openrem/openrem/issue/64/] includes changes to the database schema and needs a user response - see version 0.4.0 release notes [http://docs.openrem.org/page/release-0.4.0.html]

	#65 [https://bitbucket.org/openrem/openrem/issue/65/] includes changes to the settings file which require settings information to be copied and files moved/renamed - see version 0.4.0 release notes [http://docs.openrem.org/page/release-0.4.0.html]

	#80 [https://bitbucket.org/openrem/openrem/issue/80/] Added docs for installing Apache with auto-start on Windows Server 2012. Contributed by JA Cole

	#79 [https://bitbucket.org/openrem/openrem/issue/79/] Updated README.rst instructions

	#78 [https://bitbucket.org/openrem/openrem/issue/78/] Moved upgrade documentation into the release notes page

	#77 [https://bitbucket.org/openrem/openrem/issue/77/] Removed docs builds from repository

	#76 [https://bitbucket.org/openrem/openrem/issue/76/] Fixed crash if exporting from development environment

	#75 [https://bitbucket.org/openrem/openrem/issue/75/] Fixed bug where requested procedure wasn’t being captured on one modality

	#73 [https://bitbucket.org/openrem/openrem/issue/73/] Made launch scripts and ptsizecsv2db more robust

	#72 [https://bitbucket.org/openrem/openrem/issue/72/] Moved the secret key into the local documentation and added instructions to change it to release notes and install instructions

	#71 [https://bitbucket.org/openrem/openrem/issue/71/] Added information about configuring users to the install documentation

	#69 [https://bitbucket.org/openrem/openrem/issue/69/] Added documentation about the new delete study function

	#68 [https://bitbucket.org/openrem/openrem/issue/68/] Now checks sequence code meaning and value exists before assigning them. Thanks to JA Cole

	#67 [https://bitbucket.org/openrem/openrem/issue/67/] Added ‘Contributing authors’ section of documentation

	#66 [https://bitbucket.org/openrem/openrem/issue/66/] Added ‘Release notes’ section of documentation, incuding this file

	#65 [https://bitbucket.org/openrem/openrem/issue/65/] Added new local_settings.py file for database settings and other local settings

	#64 [https://bitbucket.org/openrem/openrem/issue/64/] Fixed imports failing due to non-conforming strings that were too long

	#63 [https://bitbucket.org/openrem/openrem/issue/63/] The mammography import code stored the date of birth unnecessarily. Also now gets decimal_age from age field if necessary

	#60 [https://bitbucket.org/openrem/openrem/issue/60/] Removed extraneous colon from interface data field

	#18 [https://bitbucket.org/openrem/openrem/issue/18/] Studies can now be deleted from the web interface with the correct login

	#16 [https://bitbucket.org/openrem/openrem/issue/16/] Added user authentication with different levels of access

	#9 [https://bitbucket.org/openrem/openrem/issue/9/] Enable import of *.dcm

0.3.9 (2014-03-08)

Note

#51 [https://bitbucket.org/openrem/openrem/issue/51/] includes changes to the database schema – make sure South is in use before upgrading. See http://docs.openrem.org/page/upgrade.html

	#59 [https://bitbucket.org/openrem/openrem/issue/59/] CSS stylesheet referenced particular fonts that are not in the distribution – references removed

	#58 [https://bitbucket.org/openrem/openrem/issue/58/] Export to xlsx more robust - limitation of 31 characters for sheet names now enforced

	#57 [https://bitbucket.org/openrem/openrem/issue/57/] Modified the docs slightly to include notice to convert to South before upgrading

	#56 [https://bitbucket.org/openrem/openrem/issue/56/] Corrected the mammography target and filter options added for issue #44 [https://bitbucket.org/openrem/openrem/issue/44/]

	#53 [https://bitbucket.org/openrem/openrem/issue/53/] Dates can now be selected from a date picker widget for filtering studies

	#52 [https://bitbucket.org/openrem/openrem/issue/52/] Split the date field into two so either, both or neither can be specified

	#51 [https://bitbucket.org/openrem/openrem/issue/51/] Remove import modifications from issue #28 [https://bitbucket.org/openrem/openrem/issue/28/] and #43 [https://bitbucket.org/openrem/openrem/issue/43/] now that exports are filtered in a better way after #48 [https://bitbucket.org/openrem/openrem/issue/48/] and #49 [https://bitbucket.org/openrem/openrem/issue/49/] changes.

	#50 [https://bitbucket.org/openrem/openrem/issue/50/] No longer necessary to apply a filter before exporting – docs changed to reflect this

	#49 [https://bitbucket.org/openrem/openrem/issue/49/] CSV exports changed to use the same filtering routine introduced for #48 [https://bitbucket.org/openrem/openrem/issue/48/] to better handle missing attributes

	#48 [https://bitbucket.org/openrem/openrem/issue/48/] New feature – can now filter by patient age. Improved export to xlsx to better handle missing attributes

	#47 [https://bitbucket.org/openrem/openrem/issue/47/] Install was failing on pydicom – fixed upstream

0.3.8 (2014-03-05)

	– File layout modified to conform to norms

	#46 [https://bitbucket.org/openrem/openrem/issue/46/] Updated documentation to reflect limited testing of mammo import on additional modalities

	#45 [https://bitbucket.org/openrem/openrem/issue/45/] mam.py was missing the licence header - fixed

	#44 [https://bitbucket.org/openrem/openrem/issue/44/] Added Tungsten, Silver and Aluminum to mammo target/filter strings to match – thanks to DJ Platten for strings

	#43 [https://bitbucket.org/openrem/openrem/issue/43/] Mammography and Philips CT import and export now more robust for images with missing information such as accession number and collimated field size

	#42 [https://bitbucket.org/openrem/openrem/issue/42/] Documentation updated to reflect #37 [https://bitbucket.org/openrem/openrem/issue/37/]

	#37 [https://bitbucket.org/openrem/openrem/issue/37/] Studies now sort by time and date

0.3.7 (2014-02-25)

	#40 [https://bitbucket.org/openrem/openrem/issue/40/] Restyled the filter section in the web interface and added a title to that section

	#38 [https://bitbucket.org/openrem/openrem/issue/38/] Column titles tidied up in Excel exports

	#36 [https://bitbucket.org/openrem/openrem/issue/36/] openrem_ptsizecsv output of log now depends on verbose flag

	#35 [https://bitbucket.org/openrem/openrem/issue/35/] Numbers no longer stored as text in Excel exports

0.3.6 (2014-02-24)

	#34 [https://bitbucket.org/openrem/openrem/issue/34/] Localised scripts that were on remote web servers in default Bootstrap code

	#33 [https://bitbucket.org/openrem/openrem/issue/33/] Documentation now exists for adding data via csv file

	#24 [https://bitbucket.org/openrem/openrem/issue/24/] Web interface has been upgraded to Bootstrap v3

	#5 [https://bitbucket.org/openrem/openrem/issue/5/] Web interface and export function now have some documentation with screenshots

0.3.5-rc2 (2014-02-17)

	#32 [https://bitbucket.org/openrem/openrem/issue/32/] Missing sys import bug prevented new patient size import from working

0.3.5 (2014-02-17)

	– Prettified this document!

	#31 [https://bitbucket.org/openrem/openrem/issue/31/] Promoted patient size import from csv function to the scripts folder so it will install and can be called from the path

	#30 [https://bitbucket.org/openrem/openrem/issue/30/] Improved patient size import from csv to allow for arbitary column titles and study instance UID in addition to accession number.

	#29 [https://bitbucket.org/openrem/openrem/issue/29/] Corrected the docs URL in the readme

0.3.4-rc2 (2014-02-14)

	#28 [https://bitbucket.org/openrem/openrem/issue/28/] XLSX export crashed if any of the filter fields were missing. Now fills on import with ‘None’

	#27 [https://bitbucket.org/openrem/openrem/issue/27/] Use requested procedure description if requested procedure code description is missing

0.3.4 (2014-02-14)

	– General improvements and addition of logo to docs

	#23 [https://bitbucket.org/openrem/openrem/issue/23/] Added Windows XP MySQL backup guide to docs

	#22 [https://bitbucket.org/openrem/openrem/issue/22/] Added running Conquest as a Windows XP service to docs

	#15 [https://bitbucket.org/openrem/openrem/issue/15/] Added version number and copyright information to xlsx exports

	#14 [https://bitbucket.org/openrem/openrem/issue/14/] Added version number to the web interface

	#13 [https://bitbucket.org/openrem/openrem/issue/13/] Improve the docs with respect to South database migrations

0.3.3-r2 (2014-02-04)

	#12 [https://bitbucket.org/openrem/openrem/issue/12/] Added this version history

	#11 [https://bitbucket.org/openrem/openrem/issue/11/] Documentation is no longer included in the tar.gz install file – see http://openrem.trfd.org instead

0.3.3 (2014-02-01)

Note

Installs of OpenREM earlier than 0.3.3 will break on upgrade if the scripts are called from other programs.
For example openrem_rdsr is now called openrem_rdsr.py

	– Added warning of upgrade breaking existing installs to docs

	#10 [https://bitbucket.org/openrem/openrem/issue/10/] Added .py suffix to the scripts to allow them to be executed on Windows (thanks to DJ Platten)

	#8 [https://bitbucket.org/openrem/openrem/issue/8/] Removed superfluous ‘/’ in base html file, harmless on linux, prevented Windows loading stylesheets (thanks to DJ Platten)

	#7 [https://bitbucket.org/openrem/openrem/issue/7/] Added windows and linux path examples for test SQLite database creation

	#6 [https://bitbucket.org/openrem/openrem/issue/6/] Corrected renaming of example files installation instruction (thanks to DJ Platten)

	#4 [https://bitbucket.org/openrem/openrem/issue/4/] Added some text to the documentation relating to importing files to OpenREM

	#3 [https://bitbucket.org/openrem/openrem/issue/3/] Corrected copyright notice in documentation

0.3.2 (2014-01-29)

	Initial version uploaded to bitbucket.org

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Previous Release Notes and Change Log

Release Notes v0.6.0

Headline changes

	Charts

	Preview of DICOM Store SCP functionality

	Exports available to import into openSkin [https://bitbucket.org/openskin/openskin]

	Modalities with no data are hidden in the user interface

	Mammography import compression force behaviour changed

	Import of Toshiba planar RDSRs fixed

Changes for 0.6.2

Minor update due prevent new installs from installing a non-compatible version of django-filter.
The link to openSkin [https://bitbucket.org/openskin/openskin] has also been updated in the fluoroscopy detail page.

There is no advantage to updating to this version over 0.6.0

Release 0.6.1 was just a documentation only change to update the link to openSkin [https://bitbucket.org/openskin/openskin].

Preparing for the upgrade

Convert to South

Make sure you have converted your database to South before attempting an upgrade

Quick reminder of how, if you haven’t done it already

Linux: Debian/Ubuntu and derivatives
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py convert_to_south remapp
Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
python /usr/local/lib/python2.7/site-packages/openrem/manage.py convert_to_south remapp

Windows, assuming no virtualenv
python C:\Python27\Lib\site-packages\openrem\manage.py convert_to_south remapp

Additional installs

OpenREM requires two additional programs to be installed to enable the new features: Numpy for charts, and
pynetdicom for the DICOM Store Service Class Provider. Note that the version of pynetdicom must be later than the
current pypi release!

Install NumPy

For linux:

sudo apt-get install python-numpy
If using a virtualenv, you might need to also do:
pip install numpy

For Windows, there are various options:

	Download executable install file from SourceForge:

	Download a pre-compiled Win32 .exe NumPy file from http://sourceforge.net/projects/numpy/files/NumPy/. You need to
download the file that matches the Python version, which should be 2.7. At the time of writing the latest version was
1.9.2, and the filename to download was numpy-1.9.2-win32-superpack-python2.7.exe. The filename is truncated on
SourceForge, so you may need to click on the i icon to see which is which. It’s usually the third superpack.

	Run the downloaded binary file to install NumPy.

	Or download a pip installable wheel file:

	Download NumPy from http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy - numpy‑1.9.2+mkl‑cp27‑none‑win32.whl is
likely to be the right version, unless you have 64bit Python installed, in which case use the
numpy‑1.9.2+mkl‑cp27‑none‑win_amd64.whl version instead.

	Install using pip:

pip install numpy‑1.9.2+mkl‑cp27‑none‑win32.whl

Install pynetdicom

pip install https://bitbucket.org/edmcdonagh/pynetdicom/get/default.tar.gz#egg=pynetdicom-0.8.2b2

Upgrading from versions prior to 0.5.1

You must upgrade to 0.5.1 first. Instructions for doing this can be found in the OpenREM Release Notes version 0.5.1.

Upgrading from version 0.5.1

	Back up your database

	For PostgreSQL you can refer to Backing up a PostgreSQL database

	For a non-production SQLite3 database, simply make a copy of the database file

	The 0.6.0 upgrade must be made from a 0.5.1 (or later) database, and a schema migration is required:

pip install openrem==0.6.0

Linux: Debian/Ubuntu and derivatives
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py schemamigration --auto remapp
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py migrate remapp
Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
python /usr/local/lib/python2.7/site-packages/openrem/manage.py schemamigration --auto remapp
python /usr/local/lib/python2.7/site-packages/openrem/manage.py migrate remapp
Windows:
python C:\Python27\Lib\site-packages\openrem\manage.py schemamigration --auto remapp
python C:\Python27\Lib\site-packages\openrem\manage.py migrate remapp

	Restart the services

	Restart the webserver

	Restart Celery

Summary of new features

Charts

Release 0.6.0 has a range of charting options available for CT and radiographic data. These charts allow visualisation
of trends and frequencies to inform surveys and monitor performance. For more information, please see Charts.

DICOM Store Service Class Provider

OpenREM can now act as the DICOM Store service, allowing direct sending of DICOM objects from modalities to OpenREM
without needing to use Conquest or any other DICOM Store SCP. This feature is a preview as it hasn’t been extensively
tested, but it is expected to work. For more information, please see DICOM Store and QR.

Exports for openSkin

Fluoroscopy studies can now be exported in a format suitable for importing into Jonathan Cole’s openSkin software. The
export link is on the fluoroscopy study detail page. The software for creating the exposure incidence map can be
downloaded from https://bitbucket.org/openskin/openskin/downloads (choose the zip file), and information about the project
can be found on the openSkin wiki [https://bitbucket.org/openskin/openskin/wiki/Home]. The software allows the user to choose between a 2D phantom that would represent
the dose to a film laying on the couch surface, or a simple 3D phantom made up of a cuboid and two semi-cylinders
(these can be seen on the Phantom design [https://bitbucket.org/openskin/openskin/wiki/Phantom%20design] section of the wiki). For both options the output is an image of the dose
distribution in 2D, along with calculated peak skin dose information.

Automatic hiding of unused modality types

A fresh install of OpenREM will no longer show any of the four modality types in the tables or in the navigation bar
at the top. As DICOM objects are ingested, the appropriate tables and navigation links are created.

Therefore a site that has no mammography for example will no longer have that table or navigation link in their
interface.

Mammography import compression force change

Prior to version 0.6, the compression force extracted from the mammography image header was divided by ten before being
stored in the database. This was because the primary author only had access to GE Senograph DS units, which store the
compression force in dN, despite claiming using Newtons in the DICOM conformance statement.

The code now checks for the term senograph ds contained in the model name. If it matches, then the value is divided by
ten. Otherwise, the value is stored without any further change. We know that later GE units, the GE Senograph Essential
for example, and other manufacturer’s units store this value in N. If you have a case that acts like the Senograph DS,
please let us know and we’ll try and cater for that.

If you have existing non-GE Senograph mammography data in your database, the compression force field for those studies
is likely to be incorrect by a factor of ten (it will be too small). Studies imported after the upgrade will be correct.
If this is a problem for you, please let us know and we’ll see about writing a script to correct the existing data.

Import of Toshiba Planar RDSRs fixed

Toshiba include Patient Orientation and Patient Orientation Modifier information in their cath lab RDSRs. The extractor
code was deficient for this as the RDSRs previously used didn’t have this information. This has now been fixed. There
might however be an issue with Station Name not being provided - it is not yet clear if this is a configuration issue.

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Previous Release Notes and Change Log

OpenREM Release Notes version 0.5.1

Headline changes

	Major database modification to remove table name length errors

	Extended the field value lengths to better incorporate all possible values and decimal places

	Improved import of grid and filter information from DX images

	Improved DX summary and detail web pages

	Any item in a row can now be clicked to move between the home and filtered pages

Upgrades: Convert to South

Always make sure you have converted your database to South before attempting an upgrade

Quick reminder of how, if you haven’t done it already

Linux: Debian/Ubuntu and derivatives
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py convert_to_south remapp
Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
python /usr/local/lib/python2.7/site-packages/openrem/manage.py convert_to_south remapp

Windows, assuming no virtualenv
python C:\Python27\Lib\site-packages\openrem\manage.py convert_to_south remapp

Upgrading from before 0.5.0

Upgrading from version 0.3.9 or earlier

	Back up your database

	For PostgreSQL you can refer to Backing up a PostgreSQL database

	For a non-production SQLite3 database, simply make a copy of the database file

	pip install openrem==0.4.2

	Migrate the schema

Linux: Debian/Ubuntu and derivatives
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py schemamigration --auto remapp
Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
python /usr/local/lib/python2.7/site-packages/openrem/manage.py schemamigration --auto remapp
Windows:
python C:\Python27\Lib\site-packages\openrem\manage.py schemamigration --auto remapp

When South has considered the changes to the schema, you will see the following message:

? The field 'Observer_context.device_observer_name' does not have a default specified, yet is NOT NULL.
? Since you are making this field nullable, you MUST specify a default
? value to use for existing rows. Would you like to:
? 1. Quit now.
? 2. Specify a one-off value to use for existing columns now
? 3. Disable the backwards migration by raising an exception; you can edit the migration to fix it later
? Please select a choice: 3

	As per the final line above, please select option 3, and then execute the migration:

Linux: Debian/Ubuntu and derivatives
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py migrate remapp
Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
python /usr/local/lib/python2.7/site-packages/openrem/manage.py migrate remapp

Windows, assuming no virtualenv
python C:\Python27\Lib\site-packages\openrem\manage.py migrate remapp

	Create and populate the database settings in the new local_settings.py file

The openrem/openrem folder can be found at:

Linux: Debian/Ubuntu and derivatives
/usr/lib/python2.7/dist-packages/openrem/openrem
Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
/usr/lib/python2.7/site-packages/openrem/openrem
Windows:
C:\Python27\Lib\site-packages\openrem\openrem

In the openrem/openrem folder, create a new file called local_settings.py and copy the contents of this link [https://bitbucket.org/openrem/openrem/raw/a37540ba88a5e9b383cf0ea03a3e77fb35638f43/openrem/openremproject/local_settings.py.example]
into a the file and save it. Alternatively, rename local_settings.py.example to local_settings.py - this is
an older version of the file.

Copy the database details from settings.py into local_settings.py

	Change the secret key - you can use http://www.miniwebtool.com/django-secret-key-generator/ to generate a new one

	Move the existing settings.py out of the python directories (delete or move somewhere as a backup)

	Rename the settings.py.new to settings.py

	Restart your webserver to check everything looks ok

	Add some users

	Go to the admin interface (eg http://localhost:8000/admin) and log in with the user created when you originally
created the database (the manage.py syncdb command - Do you want to create a superuser)

	Create some users and add them to the appropriate groups (if there are no groups, go to the OpenREM homepage and
they should be there when you go back to admin).

	viewgroup can browse the data only

	exportgroup can do as view group plus export data to a spreadsheet, and will be able to import height and weight data in due course (See Issue #21 [https://bitbucket.org/openrem/openrem/issue/21/])

	admingroup can delete studies in addition to anything the export group can do

Upgrading from versions 0.4.0 - 0.4.2

	Back up your database

	For PostgreSQL you can refer to Backing up a PostgreSQL database

	For a non-production SQLite3 database, simply make a copy of the database file

	Install version 0.5.0

	pip install openrem==0.5.0

	Install RabbitMQ

	Linux - Follow the guide at http://www.rabbitmq.com/install-debian.html

	Windows - Follow the guide at http://www.rabbitmq.com/install-windows.html

	Move local_settings.py details from openrem to openremproject

The inner openrem Django project folder has now been renamed openremproject
The customised local_settings.py file and the wsgi.py file have
remain in the old openrem folder. The openrem/openrem folder can be found as detailed in the upgrade from
‘0.3.9 or earlier’ instructions above, and the new openrem/openremproject folder is in the same place.

	Move local_settings.py to openremproject. If you have kept the older local_settings file, you may like to
instead rename the local_settings.py.example file instead, then transfer the database settings and change the
secret key.

	Set the path for MEDIA_ROOT. The webserver needs to be able to write to this location - it is where OpenREM
will store export files etc so that they can be downloaded. For suggestions, see the main _install instructions.

	Set ALLOWED_HOSTS. For details see the Django docs [https://docs.djangoproject.com/en/1.6/ref/settings/#allowed-hosts]
A '*' allows any host - see the Django docs for the risk of this.

	Move wsgi.py from openrem to openremproject or rename wsgi.py.example in openremproject

If you haven’t edited it, simply rename the new version in openremproject. Otherwise, move the old version and
edit the following line as follows:

Old:
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "openrem.settings")
New:
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "openremproject.settings")

	Tidying up - you should delete the old openrem folder - you might like to take a backup first!

	Update web server configuration

The configuration of the webserver will need to be updated to reflect the new location for the settings.py file
and the wsgi.py file.

If you are using the built-in test webserver, static files will no-longer be served unless you use the insecure
option:

python manage.py runserver x.x.x.x:8000 --insecure

	Migrate the schema

Linux: Debian/Ubuntu and derivatives
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py schemamigration --auto remapp
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py migrate remapp
Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
python /usr/local/lib/python2.7/site-packages/openrem/manage.py schemamigration --auto remapp
python /usr/local/lib/python2.7/site-packages/openrem/manage.py migrate remapp
Windows:
python C:\Python27\Lib\site-packages\openrem\manage.py schemamigration --auto remapp
python C:\Python27\Lib\site-packages\openrem\manage.py migrate remapp

After restarting the webserver, you should now have OpenREM 0.5.0 up and running. If you wish to test export
functionality at this stage, start the Celery task queue - instructions in the Installing OpenREM docs or at the end of this
guide.

Now move to Upgrading from version 0.5.0.

Upgrading from version 0.4.3

	Back up your database

	For PostgreSQL you can refer to Backing up a PostgreSQL database

	For a non-production SQLite3 database, simply make a copy of the database file

	The 0.5.1 upgrade must be made from a 0.5.0 database, so a schema migration is required:

pip install openrem==0.5.0

 # Linux: Debian/Ubuntu and derivatives
 python /usr/local/lib/python2.7/dist-packages/openrem/manage.py schemamigration --auto remapp
 python /usr/local/lib/python2.7/dist-packages/openrem/manage.py migrate remapp
 # Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
 python /usr/local/lib/python2.7/site-packages/openrem/manage.py schemamigration --auto remapp
 python /usr/local/lib/python2.7/site-packages/openrem/manage.py migrate remapp
 # Windows:
 python C:\Python27\Lib\site-packages\openrem\manage.py schemamigration --auto remapp
 python C:\Python27\Lib\site-packages\openrem\manage.py migrate remapp

Upgrading from version 0.5.0

	Back up your database

	For PostgreSQL you can refer to Backing up a PostgreSQL database

	For a non-production SQLite3 database, simply make a copy of the database file

	Install 0.5.1:

pip install openrem==0.5.1

	Find out how many migration files you have

Method 1:

Use a file browser or terminal to list the contents of the migrations folder, eg:

Linux: Debian/Ubuntu and derivatives
ls /usr/local/lib/python2.7/dist-packages/openrem/remapp/migrations/
Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
ls /usr/local/lib/python2.7/site-packages/openrem/remapp/migrations/
Windows (alternatively use the file browser):
dir C:\Python27\Lib\site-packages\openrem\remapp\migrations\

Method 2:

Use the Django manage.py program to list the existing migrations:

Linux: Debian/Ubuntu and derivatives
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py migrate --list remapp
Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
python /usr/local/lib/python2.7/site-packages/openrem/manage.py migrate --list remapp
Windows
python C:\Python27\Lib\site-packages\openrem\manage.py migrate --list remapp

The output should look something like this - there can be any number of existing migrations (though 0001_initial
will always be present):

remapp
(*) 0001_initial
(*) 0002_auto__chg_field_ct_accumulated_dose_data_ct_dose_length_product_total_
(*) 0003_auto__chg_field_general_equipment_module_attributes_station_name
(*) 0004_auto__chg_field_ct_radiation_dose_comment__chg_field_accumulated_proje
(*) 0005_auto__add_exports__add_size_upload
(*) 0006_auto__chg_field_exports_filename
(*) 0007_auto__add_field_irradiation_event_xray_detector_data_relative_xray_exp
() 000x_051datamigration
() 000x_051schemamigration

	Rename the two 051 migration files to follow on from the existing migrations, for example 0008_051schemamigration.py
and 0009_051datamigration.py for the existing migrations above, or 0002_051schemamigration.py and
0003_051datamigration.py if the only migration is the initial migration. The 051schemamigration must
come before the 051datamigration.

If you are using linux, you might like to do it like this (from within the openrem folder):

mv remapp/migrations/000{x,8}_051schemamigration.py
mv remapp/migrations/000{x,9}_051datamigration.py

	If you now re-run migrate --list remapp you should get a listing with the 051schemamigration and the
051datamigration listed at the end:

remapp
 (*) 0001_initial
 (*) 0002_auto__chg_field_ct_accumulated_dose_data_ct_dose_length_product_total_
 (*) 0003_auto__chg_field_general_equipment_module_attributes_station_name
 (*) 0004_auto__chg_field_ct_radiation_dose_comment__chg_field_accumulated_proje
 (*) 0005_auto__add_exports__add_size_upload
 (*) 0006_auto__chg_field_exports_filename
 (*) 0007_auto__add_field_irradiation_event_xray_detector_data_relative_xray_exp
 () 0008_051schemamigration
 () 0009_051datamigration

The star indicates that a migration has already been completed. If you have any that are not completed apart from the
051schemamigration and the 051datamigration then please resolve these first.

	Now execute the migrations:

Linux: Debian/Ubuntu and derivatives
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py migrate remapp
Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
python /usr/local/lib/python2.7/site-packages/openrem/manage.py migrate remapp
Windows
python C:\Python27\Lib\site-packages\openrem\manage.py migrate remapp

Restart the web server

If you are using the built-in test web server (not for production use):

python manage.py runserver x.x.x.x:8000 --insecure

Otherwise restart using the command for your web server

Restart the Celery task queue

For testing, in a new shell:

Linux: Debian/Ubuntu and derivatives
cd /usr/local/lib/python2.7/dist-packages/openrem/
Linux: other distros. In a virtualenv replace all up to lib/ as appropriate
cd /usr/local/lib/python2.7/site-packages/openrem/
Windows
cd C:\Python27\Lib\site-packages\openrem\

All
celery -A openremproject worker -l info

For production use, see http://celery.readthedocs.org/en/latest/tutorials/daemonizing.html

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Previous Release Notes and Change Log

OpenREM Release Notes version 0.5.0

Headline changes

	Import, display and export of CR/DX data from image headers

	Export of study data from fluoroscopy to xlsx files

	Importing data from Windows using *.dcm style wildcards

	Hologic tomography projection images are no longer excluded if part of a Combo exposure

Specific upgrade instructions

Always make sure you have converted your database to South before attempting an upgrade

Quick reminder of how, if you haven’t done it already:

Linux:

python /usr/local/lib/python2.7/dist-packages/openrem/manage.py convert_to_south remapp

Windows:

python C:\Python27\Lib\site-packages\openrem\manage.py convert_to_south remapp

Upgrading from versions before 0.4.3

If you are upgrading from 0.3.9 or earlier, you will need to upgrade to
version 0.4.2 first. See the OpenREM Release Notes version 0.4.3.

If you are upgrading from 0.4.0 or later, the instructions in OpenREM Release Notes version 0.4.3
still need to be followed to install/setup RabbitMQ and Celery and to update
the configuration files, but you can go straight to 0.5.0 rather than
installing 0.4.3.

Upgrading from version 0.4.3

pip install openrem==0.5.0

(Will need sudo or equivalent if using linux without a virtualenv)

Database migration

Assuming no virtualenv

Linux:

python /usr/local/lib/python2.7/dist-packages/openrem/manage.py schemamigration --auto remapp
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py migrate remapp

Windows:

C:\Python27\Lib\site-packages\openrem\manage.py schemamigration --auto remapp
C:\Python27\Lib\site-packages\openrem\manage.py migrate remapp

Restart the web server

If you are using the built-in test web server (not for production use):

python manage.py runserver x.x.x.x:8000 --insecure

Otherwise restart using the command for your web server

Restart the Celery task queue

For testing, in a new shell: (assuming no virtualenv)

Linux:

cd /usr/local/lib/python2.7/dist-packages/openrem/
celery -A openremproject worker -l info

Windows:

cd C:\Python27\Lib\site-packages\openrem\
celery -A openremproject worker -l info

For production use, see http://celery.readthedocs.org/en/latest/tutorials/daemonizing.html

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Previous Release Notes and Change Log

OpenREM Release Notes version 0.4.3

Headline changes

	Export of study information is now handled by a task queue - no more export time-outs.

	Patient size information in csv files can now be uploaded and imported via a web interface.

	Proprietary projection image object created by Hologic tomography units can now be interrogated for details of the tomosynthesis exam.

	Settings.py now ships with its proper name, this will overwrite important local settings if upgrade is from 0.3.9 or earlier.

	Time since last study is no longer wrong just because of daylight saving time!

	Django release set to 1.6; OpenREM isn’t ready for Django 1.7 yet

	The inner openrem Django project folder is now called openremproject to avoid import conflicts with Celery on Windows

	DEBUG mode now defaults to False

Specific upgrade instructions

Always make sure you have converted your database to South before attempting an upgrade

Quick reminder of how, if you haven’t done it already:

Linux:

python /usr/local/lib/python2.7/dist-packages/openrem/manage.py convert_to_south remapp

Windows:

python C:\Python27\Lib\site-packages\openrem\manage.py convert_to_south remapp

Upgrading from 0.3.9 or earlier

It is essential that you upgrade to at least 0.4.0 first, then upgrade to
0.4.3. Otherwise the settings file will be overwritten and you will lose
your database settings. There is also a trickier than usual database
migration and instructions for setting up users. Fresh installs should start
with the latest version.

Upgrade to version 0.4.2

pip install openrem==0.4.2

(Will need sudo or equivalent if using linux without a virtualenv)

Then follow the instructions in OpenREM Release Notes version 0.4.0 from migrating the
database onwards, before coming back to these instructions.

Upgrading from 0.4.0 or above

Install OpenREM version 0.4.3

pip install openrem==0.4.3

(Will need sudo or equivalent if using linux without a virtualenv)

RabbitMQ

The message broker RabbitMQ needs to be installed to enable the export and upload features

	Linux - Follow the guide at http://www.rabbitmq.com/install-debian.html

	Windows - Follow the guide at http://www.rabbitmq.com/install-windows.html

Move and edit local_settings.py file and wsgi.py files

The inner openrem Django project folder has now been renamed openremproject
to avoid import confusion that prevented Celery working on Windows.

When you upgrade, the local_settings.py file and the wsgi.py file will
remain in the old openrem folder. Both need to be moved across to the
openremproject folder, and edited as below.

The new and old folders will be found in:

	Linux: /usr/local/lib/python2.7/dist-packages/openrem/

	Linux with virtualenv: /home/myname/openrem/lib/python2.7/site-packages/openrem/

	Windows: C:\Python27\Lib\site-packages\openrem\

Edit the local_settings.py file

The MEDIA_ROOT path needs to be defined. This is
the place where the study exports will be stored for download and where the
patient size information csv files will be stored temporarily whilst they
are bing processed.

The path set for MEDIA_ROOT is up to you, but the user that runs the
webserver must have read/write access to the location specified because
it is the webserver than reads and writes the files. In a debian linux,
this is likely to be www-data for a production install. Remember to use
forward slashes in the config file, even for Windows.

Linux example:

MEDIA_ROOT = "/var/openrem/media/"

Windows example:

MEDIA_ROOT = "C:/Users/myusername/Documents/OpenREM/media/"

The ALLOWED_HOSTS needs to be defined, as the DEBUG mode is now
set to False. This needs to contain the server name or IP address that
will be used in the URL in the web browser. For example:

ALLOWED_HOSTS = [
 '192.168.56.102',
 '.doseserver.',
 'localhost',
]

A dot before a hostname allows for subdomains (eg www.doseserver), a dot
after a hostname allows for FQDNs (eg doseserver.ad.trust.nhs.uk).
Alternatively, a single '*' allows any host, but removes the security
the feature gives you.

Edit the wsgi.py file with the new project folder name

If you aren’t using the wsgi.py file as part of your webserver setup,
you might like to simply rename the wsgi.py.example file in the
openremproject folder.

If you are using it, edit the line:

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "openrem.settings")

to read:

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "openremproject.settings")

Tidying up

Finally, you should delete the old openrem folder - you might like to
take a backup first!

Database migration

Assuming no virtualenv

Linux:

python /usr/local/lib/python2.7/dist-packages/openrem/manage.py schemamigration --auto remapp
python /usr/local/lib/python2.7/dist-packages/openrem/manage.py migrate remapp

Windows:

C:\Python27\Lib\site-packages\openrem\manage.py schemamigration --auto remapp
C:\Python27\Lib\site-packages\openrem\manage.py migrate remapp

Web server

If you are using a production webserver, you will probably need to edit
some of the configuration to reflect the change in location of settings.py,
for example DJANGO_SETTINGS_MODULE = openremproject.settings, and then
restart the web server. You may need to do something similar for the location
of wsgi.py.

If you are using the built-in test web server (not for production use),
then the static files will not be served unless you add --insecure
to the command. This is one of the consequences of setting DEBUG to
False:

python manage.py runserver x.x.x.x:8000 --insecure

Start the Celery task queue

Note

The webserver and Celery both need to be able to read and write to the
MEDIA_ROOT location. Therefore you might wish to consider starting
Celery using the same user or group as the webserver, and setting the
file permissions accordingly.

For testing, in a new shell: (assuming no virtualenv)

Linux:

cd /usr/local/lib/python2.7/dist-packages/openrem/
celery -A openremproject worker -l info

Windows:

cd C:\Python27\Lib\site-packages\openrem\
celery -A openremproject worker -l info

For production use, see http://celery.readthedocs.org/en/latest/tutorials/daemonizing.html

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Previous Release Notes and Change Log

OpenREM Release Notes version 0.4.2

Headline changes

	This release fixes a major bug introduced in 0.4.0 regarding the import scripts.

Specific upgrade instructions

Upgrading from 0.3.9 or earlier

Follow the instructions in OpenREM Release Notes version 0.4.0

Upgrading from 0.4.0 or above

Move straight to version 0.4.3 and follow the instructions in OpenREM Release Notes version 0.4.3

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Previous Release Notes and Change Log

OpenREM Release Notes version 0.4.1

Headline changes

	This release is exacly the same as 0.4.1 bar some documentation corrections

Specific upgrade instructions

Please use the 0.4.0 release notes for upgrades from 0.3.9

OpenREM Release Notes version 0.4.0

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	OpenREM 0.7.1 documentation

 	Previous Release Notes and Change Log

OpenREM Release Notes version 0.4.0

Headline changes

	User authentication has been added

	Studies can be deleted from the web interface

	Import scripts can now be passed a list of files, eg python openrem_rdsr.py *.dcm

	Date of birth no longer retained for mammography (bug fix - correct behaviour already existed for other imports)

	General bug fixes to enable import from wider range of sources

	Improved user documentation

Specific upgrade instructions

	pip install openrem==0.4.2 Go straight to 0.4.2

	Migrate the database

Warning

A database migration is required that will need a choice to be made

	Linux: python /usr/lib/python2.7/dist-packages/openrem/manage.py schemamigration --auto remapp

	Windows: C:\Python27\Lib\site-packages\openrem\manage.py schemamigration --auto remapp

When South has considered the changes to the schema, you will see the following message:

? The field 'Observer_context.device_observer_name' does not have a default specified, yet is NOT NULL.
? Since you are making this field nullable, you MUST specify a default
? value to use for existing rows. Would you like to:
? 1. Quit now.
? 2. Specify a one-off value to use for existing columns now
? 3. Disable the backwards migration by raising an exception; you can edit the migration to fix it later
? Please select a choice: 3

As per the final line above, the correct choice is 3. The fields that are now
nullable previously weren’t. Existing data in those fields will have a value, or those
tables don’t exist in the current database. The problem scenario is if after
the migration these tables are used and one of the new nullable fields is left as null,
you will not be able to migrate back to the old database schema without error.
This is not something that you will want to do, so this is ok.

Do the migration:

	Linux: python /usr/lib/python2.7/dist-packages/openrem/manage.py migrate remapp

	Windows: C:\Python27\Lib\site-packages\openrem\manage.py migrate remapp

	Update the settings files

Warning

The settings file has changed and will need to be manually edited.

Changes need to be made to the settings.py file where the database details are stored.
Normally upgrades don’t touch this file and the copy in the upgrade has a .example suffix.
This upgrade and potentially future ones will need to change this file, so the
format has been changed. The settings.py file will now be replaced
each time the code is upgraded. In addition, there is a new local_settings.py
file that contains things that are specific to your installation, such as the
database settings.

This upgrade will include a file called settings.py.new and the local_settings.py.example
file. You will need to do the following:

	Copy the database settings from your current settings.py file to the local_settings.py.example file
and rename it to remove the .example.
Both of these files are in the openrem/openrem directory, which will be somewhere like
	Linux: /usr/lib/python2.7/dist-packages/openrem/openrem/

	Windows: C:\Python27\Lib\site-packages\openrem\openrem\

	Move the existing settings.py out of the python directories

	Rename the settings.py.new to settings.py

	Create a new secret key

All versions of openrem ship with the same secret key. This key is used for web security
checks, and should be unique (and secret) for each installation.

	Generate a new secret key - http://www.miniwebtool.com/django-secret-key-generator/ is a
suitable method of creating a new key.

	Copy the new key and use it to replace the default key in the local_settings.py file

	Restart your webserver

	Add some users

	Go to the admin interface (eg http://localhost:8000/admin) and log in with the user created when you originally created the database (manage.py syncdb)

	Create some users and add them to the appropriate groups (if there are no groups, go to the OpenREM homepage and they should be created).

	viewgroup can browse the data only

	exportgroup can do as view group plus export data to a spreadsheet, and will be able to import height and weight data in due course (See Issue #21 [https://bitbucket.org/openrem/openrem/issue/21/])

	admingroup can delete studies in addition to anything the export group can do

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	OpenREM 0.7.1 documentation

 Python Module Index

 c |
 d |
 g |
 n |
 r

 			

 		
 c	

 	[image: -]
 	
 check_uid	

 	
 	
 check_uid.	
 Simple module to check if uid already exists in database.

 			

 		
 d	

 	[image: -]
 	
 dcmdatetime	

 	
 	
 dcmdatetime.	
 Module to create Python dates and times from DICOM dates and times and vice versa.

 			

 		
 g	

 	[image: -]
 	
 get_values	

 	
 	
 get_values.	
 Module to return values from DICOM elements using pydicom.

 			

 		
 n	

 	[image: -]
 	
 not_patient_indicators	

 	
 	
 not_patient_indicators.	
 Looks for indications that a study might be a test or QA study.

 			

 		
 r	

 	[image: -]
 	
 remapp	

 	
 	
 remapp.tools.check_uid	

 	
 	
 remapp.tools.dcmdatetime	

 	
 	
 remapp.tools.get_values	

 	
 	
 remapp.tools.not_patient_indicators	

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	OpenREM 0.7.1 documentation

Index

 C
 | D
 | G
 | M
 | N
 | R

C

 	

 	check_uid() (in module remapp.tools.check_uid)

 	

 	check_uid. (module)

D

 	

 	dcmdatetime. (module)

G

 	

 	get_date() (in module remapp.tools.dcmdatetime)

 	get_date_time() (in module remapp.tools.dcmdatetime)

 	get_not_pt() (in module remapp.tools.not_patient_indicators)

 	get_or_create_cid() (in module remapp.tools.get_values)

 	get_seq_code_meaning() (in module remapp.tools.get_values)

 	

 	get_seq_code_value() (in module remapp.tools.get_values)

 	get_time() (in module remapp.tools.dcmdatetime)

 	get_value_kw() (in module remapp.tools.get_values)

 	get_value_num() (in module remapp.tools.get_values)

 	get_values. (module)

M

 	

 	make_date() (in module remapp.tools.dcmdatetime)

 	make_date_time() (in module remapp.tools.dcmdatetime)

 	make_dcm_date() (in module remapp.tools.dcmdatetime)

 	

 	make_dcm_date_range() (in module remapp.tools.dcmdatetime)

 	make_time() (in module remapp.tools.dcmdatetime)

N

 	

 	not_patient_indicators. (module)

R

 	

 	remapp.tools.check_uid (module)

 	remapp.tools.dcmdatetime (module)

 	remapp.tools.get_values (module)

 	

 	remapp.tools.not_patient_indicators (module)

 	return_for_export() (in module remapp.tools.get_values)

 Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

 _images/ChartCTMeanDLPperSystem.png
Plot of mean DLP for each acquisition protocol

Mean DLP per acquisition protocol

-
£
2 1000
E
£
a
-
H
. ﬂ [|
z 2 z E z E
M CT scanner 1 Hospital A [l CT scanner 1 Hospital B CT scanner 2 Hospital A Il CT scanner 2 Hospital B
o

Sorting options
1DLP ffrequency AtoZ
IDLP |frequency Zto A

Toggle fullscreen

Click on an individual column to show a histogram of data for that acquisition protocol
Click on a histogram bin tooltip to see the studies that contain the acquisitions in the bin. Note that this will
include acquisitions at the upper bin boundary, so in some cases may display more data than shown in the
histogram bin

_images/skin_dose_map.png
-,

_images/ChartCTMeanDLPhistogramPerSystemNorm.png
Plot of mean DLP for each acquisition protocol

Histograms of Abdomen DLP values (normalised)

Ll

1.00

< Back to CT scanner 2 Hospital B

Wi

865.3 < x < 897.8

8327 < x < 8653

8002 < x < 8327

767.7 = x < 8002

7350 = x < 767.7

7026 = x < 735.1

670.0 = x < 7026

6375 < x < 570.0

6049 < x < 537.5

572.4 2 x < 504.9

539.9 = x < 572.4

507.3 = x < 539.9

4748 = x < 507.3

a42.2 = x < 4748

409.7 = x < 4422

377.1 2 x < 4097

34462 x < 377.1

312,02 x < 3445

279,52 x <3120

2

pasieuLioy

000 =

DLP range (mGy.cm)

I CT scanner 2 Hospital A Il CT scanner 2 Hospital B

I CT scanner 1 Hospital A 1% CT scanner 1 Hospital B

Highehars com

“Toggle normalised histograms

Toggle fullscreen

_images/AdminImports.png
Completed import tasks

impert stared import time No.rows oomnload gl Delets?
asecondsago ass e ool -
Jr— s 20 r—

_images/UpdateDisplayName.png
Display name Institution Department Manufacturer Model Station Serial Software Gantry ID
name. no. version

CT scanner 1, Hospital Bsc; CT scanner 1, Hospital None TOSHBA Aquion scanner 1 64023 syngoCT 20128 None
B >3

_images/AdminMenu.png
User level config
Chart options
‘Switch charts off

Systemlevel config

Manage users

View and edit display names
DICOM object delete settings
DICOM network configuration
Patient ID settings

_images/ExportWithPID.png
Data export

Notes Apply the exam fter f15 0 refine wha s exported.

Bpoiocsy | winnames | Winio | Winbor

porioxtsx | Winnames | WhID it botn

_images/AdminUploadPtSzCSV.png
raphy

Uploading patient size data to OpenREM

Inmost instances, dose metics from the modaliies make much more sense when reviewed in conjunction with patient size. This
nterface allows you to upload a csv fle containing paient size information that can then be imported (o the existing data in the
database.

What needs to be in the csv file?

The csv fle needs to contain a column for each of the following, with a colum tie in the first row. The columns can be in any order;
addiional columns will be ignored:

+ Paient hight

« Patient weight

+ Study identiier*

+ Study identifier type*

*The study identfier can be cither the accession number or the
Study Instance UID. The column iles can be anything, and
there can be as many other columns as you lie.

Select a file:

Choose

Upload csv to be processed
Notes:
1f you have a csv file with weight but not height or vice-versa, just add a column header to a blank column to sut.

Data already i the database does not get overwitten. So if a study already has a height or weigh, or if the same study identife is
used more than ance in the csv file on diferent roles, only the first entry i used.

_images/Delete.png
name

P1234

P1234

Date.

2013-05-23
1009

2013-05-23
11.05

2013-05-23

‘Study description | Accession number

Thorax~TAPL20keIV (Adult) |
E 1

Thorax"TA_IV120kV (Adul) |
5 oy

Thorax~TAPL20keIV (Adult) |

Number of
events

Dose Length
Product Total

mGy.cm
1257.10

31426

688.99

Delete?

Delete

Delete

Delete

_images/PythonWindowsPath.png
=

puth
windows

Disk Usage

Customize Python 2.7.10

Select the way you want features to be installed.
the way

Giick on the icons in the tree below to change
features will be installed.

=:IRegister Extensions
=TTk

= Documentation

= Utilty Scripts

=pip

sdTest suite

x-1Add python.exe to Path

Prepe * Entire feature will be installed on local hard drive

This 2
prom; *_Entire feature vill be unavailable

‘This feature requires KB on your hard drive.

<Back [Next>

Cancel

interface.html

 Navigation

 		
 index

 		
 modules |

 		OpenREM 0.7.1 documentation »

Using the OpenREM web interface

Contents:

		Navigating, filtering and study details
		Navigating the OpenREM web interface

		Filtering for specific studies

		Viewing study details

		Exporting study information
		Exporting to csv and xlsx sheets

		OpenREM administration
		Deleting studies

		Adding patient size information from csv using the web interface
		Uploading patient size data

		Importing the size data to the database

		Reviewing previous imports

		Deleting import logs

		Adding patient size information from csv using the command line

 © Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		OpenREM 0.7.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

apache_on_windows.html

 Navigation

 		
 index

 		
 modules |

 		OpenREM 0.7.1 documentation »

Installing Apache on Windows Server 2012 with auto-restart

Note

Author JA Cole

These instructions are for installing OpenREM under Apache on Windows as
a developers alternative to the built-in HTTP server. They have been written
using Windows Server 2012, and feature automatic restarts of the Apache server
when the code changes, much as the built-in server does.

Get and Install Apache

		Download the zip of the appropriate version from https://www.apachelounge.com/

		Extract the zip somewhere useful. For this guide we will assume C:\apache24\

Get and Install MOD_WSGI

		Download mod_wsgi that matches your Windows, Apache and Python versions from http://www.lfd.uci.edu/~gohlke/pythonlibs/#mod_wsgi

		Extract the mod_wsgi.so file to C:\apache24\modules\

		Add the following module C:\apache24\conf\httpd.conf:

LoadModule wsgi_module modules/mod_wsgi.so

		At the end of C:\apache24\conf\httpd.conf add the following:

WSGIScriptAlias / "c:/Python27/Lib/site-packages/openrem/openremproject/wsgi.py"
WSGIPythonPath "c:/Python27/Lib/site-packages/openrem"

<Directory "c:/Python27/Lib/site-packages/openrem/openremproject">
<Files wsgi.py>
Order deny,allow
Require all granted
</Files>
</Directory>

Get and Install wsgi.py and monitor.py

Detailed instructions are available here: https://code.google.com/p/modwsgi/wiki/ReloadingSourceCode

		Change wsgi.py in the openrem/openremproject folder to the following

"""
WSGI config for OpenREM project.

This module contains the WSGI application used by Django's development server
and any production WSGI deployments. It should expose a module-level variable
named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover
this application via the ``WSGI_APPLICATION`` setting.

Usually you will have the standard Django WSGI application here, but it also
might make sense to replace the whole Django WSGI application with a custom one
that later delegates to the Django one. For example, you could introduce WSGI
middleware here, or combine a Django application with an application of another
framework.

"""
import os
import sys

path = 'C:/Python27/Lib/site-packages/openrem'
if path not in sys.path:
sys.path.append(path)

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "openremproject.settings")

Apply WSGI middleware here.

import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

import openremproject.monitor
openremproject.monitor.start(interval=1.0)

		Create a file monitor.py in the openrem/openremproject folder with the following contents

Code from the modwsgi wiki at https://code.google.com/p/modwsgi/wiki/ReloadingSourceCode
Copyright 2007-2011 GRAHAM DUMPLETON
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

import os
import sys
import time
import signal
import threading
import atexit
import Queue

_interval = 1.0
_times = {}
_files = []

_running = False
_queue = Queue.Queue()
_lock = threading.Lock()

def _restart(path):
 _queue.put(True)
 prefix = 'monitor (pid=%d):' % os.getpid()
 print >> sys.stderr, '%s Change detected to \'%s\'.' % (prefix, path)
 print >> sys.stderr, '%s Triggering Apache restart.' % prefix
 import ctypes
 ctypes.windll.libhttpd.ap_signal_parent(1)

def _modified(path):
 try:
 # If path doesn't denote a file and were previously
 # tracking it, then it has been removed or the file type
 # has changed so force a restart. If not previously
 # tracking the file then we can ignore it as probably
 # pseudo reference such as when file extracted from a
 # collection of modules contained in a zip file.

 if not os.path.isfile(path):
 return path in _times

 # Check for when file last modified.

 mtime = os.stat(path).st_mtime
 if path not in _times:
 _times[path] = mtime

 # Force restart when modification time has changed, even
 # if time now older, as that could indicate older file
 # has been restored.

 if mtime != _times[path]:
 return True
 except:
 # If any exception occured, likely that file has been
 # been removed just before stat(), so force a restart.

 return True

 return False

def _monitor():
 while 1:
 # Check modification times on all files in sys.modules.

 for module in sys.modules.values():
 if not hasattr(module, '__file__'):
 continue
 path = getattr(module, '__file__')
 if not path:
 continue
 if os.path.splitext(path)[1] in ['.pyc', '.pyo', '.pyd']:
 path = path[:-1]
 if _modified(path):
 return _restart(path)

 # Check modification times on files which have
 # specifically been registered for monitoring.

 for path in _files:
 if _modified(path):
 return _restart(path)

 # Go to sleep for specified interval.

 try:
 return _queue.get(timeout=_interval)
 except:
 pass

_thread = threading.Thread(target=_monitor)
_thread.setDaemon(True)

def _exiting():
 try:
 _queue.put(True)
 except:
 pass
 _thread.join()

atexit.register(_exiting)

def track(path):
 if not path in _files:
 _files.append(path)

def start(interval=1.0):
 global _interval
 if interval < _interval:
 _interval = interval

 global _running
 _lock.acquire()
 if not _running:
 prefix = 'monitor (pid=%d):' % os.getpid()
 print >> sys.stderr, '%s Starting change monitor.' % prefix
 _running = True
 _thread.start()
_lock.release()

Install Micosoft C++ Distributable

Install the microsoft C++ distributable making sure the version number matches the version number for the apache and mod_wsgi downloads.
http://www.microsoft.com/en-us/download/details.aspx?id=30679#

Optional: Install apache as a service

Run a terminal as administrator.:

c:\apache24\bin\httpd -k install

Setup the URLs

Add the following to the openrem urls.py file:

from django.conf import settings
if settings.DEBUG:
 urlpatterns += patterns('django.contrib.staticfiles.views',
 url(r'^static/(?P<path>.*)$', 'serve'),
)

Collect the static files

Collect your static files by running:

python manage.py collectstatic

If this fails because openrem lacks a static folder either copy the static folder from remapp to the openrem directory, adjust the openrem settings or set up a link.
To setup a link run:

mklink /D c:\python27\lib\site-packages\openrem\static c:\python27\lib\site-packages\openrem\remapp\static

 © Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

_images/ConfigMenu.png
Imports ~.

User level config
Chart options
‘Switch charts off

Systemevel config

Manage users

| View and edit display names
DICOM object delete setings
DICOM network configuration
Patient D settings

L

_images/Exports.png
Export tasks in progress

Task ID Exported Modality Exporttype No.records ~ Progress

452dcff9-6556-472d-88fb-0b3(77b2984d 6 secondsago CT XLSXexport 67 Writing study 4 of 67 to All data sheet and individual protocol sheets
Completed export tasks

Exported Modality Export type No.records Export time Download

1day, 23hoursago MG Csv export 8 12.8 seconds €Xports/2014/08/01/mgexport20140801-222611816429.csv =

1day, 23hoursago CT XLSX export 67 2minutes and 12 seconds exports/2014/08/01/ctexport20140801-222110654745.xlsx =

2days, 3hoursago MG NHSBSP CSV export 8 10.6 seconds €xports/2014/08/01/mg_nhsbsp_20140801-180937510304.csv =

5 dave 12 hotirs ann MG]V exnort a =2 6 cornnds axnon</2014/0R/01/maexnar?0140801-082900981104 ccy

_images/QRstatuses.png
Current DICOM SCP statuses

Remote QR nodes
Conquest
Test PACS node

Local Store nodes
Test Node

Test AutoStart Node
conquest

+ responding to DICOM echo
@ not responding to DICOM echo

@ not responding to DICOM echo
+ responding to DICOM echo
+ responding to DICOM echo

Query retrieve dialogue

Remote host field*

Conquest

Store scp field*

N Test AutoStart Node.

_images/storenodefail.png
@ Association fail - server not running?

_images/netdicomstorescpadvanced.png
Advanced - test/development use only

DICOM store node built in to OpenREM is not yet ready for production. See DICOM store documentation (Advanced)

Advanced use only: tick this box to control the server using OpenREM

Advanced use only: tick this box to auto-start this server using celery beat

_images/AdminSizeLog.png
Patient size import from sizeupload/2014/07/11/doctored.csv

1.3.12.2.1107.5.4.5.146226.. 30000012080207411271800000009 :
Height of 166.50 m not inserted as 166.5 cm already in the database
Weight of 58.15 kg not inserted as 58.15 kg already in the database
1.3.51.6.1.1.192.168.90.77.100000611814. 611849
Height of 165 m not inserted as 165 cm already in the database
Weight of 87 kg not inserted as 87 kg already in the database
1.2.840.113704.1.111.5924.1371549177.10:
Inserted height of 184 cm
Inserted weight of 113 kg
1.2.840.113704.1.111.5000.1371472141.5:
Inserted height of 166.10 cm
Inserted weight of 95.50 kg
1.2.840.113704.1.111.5000. 13714721996
Inserted height of 172 cm
Inserted weight of 55 kg

_images/DisplayNameList.png
OpenREM Imports ~

Click on a row to edit the display name.

CcT

There are 4 entries in this table.

Display name Institution Department Manufacturer Model ‘Station Serial Software Gantry
name no. version D

CT scanner 1, Hospital A CT scanner 1, None SIEMENS SOMATOM scanner 1 64023 syngo CT None
'scanner 1 Hospital A Definition AS 20128

CT scanner 1, Hospital B CT scanner 1, None TOSHIBA Aquilion 64 scanner1 64023 syngo CT None
'scanner 1 Hospital B 20128

CT scanner 2, Hospital A CT scanner 2, None SIEMENS SOMATOM scanner2 64023 syngo CT None
'scanner 2 Hospital A Definition 64 20128

CT scanner 2, Hospital B CT scanner 2, None PHILIPS Brilliance 64 scanner2 64023 syngo CT None
'scanner 2 Hospital B 20128

Mammography

There are 0 entries in this table.

Displayname Institution ~ Department ~ Manufacturer ~ Model ~ Stationname Serialno. Software version Gantry ID

DX and CR

There are 5 entries in this table.
Display name Institution Department Manufacturer Model ~Station serial ‘Software Gantry

name no. version D

X-ray room A, Hospital B station ~ X-ray room A, Hospital ~ None canon Inc. CXDI station 1 200170 V6.60.02 None
1 B
X-ray room B, Hospital B station ~ X-ray room B, Hospital ~ None canon Inc. CXDI station 2 200170 V6.60.02 None
2 B
X-ray room C, Hospital A station ~ X-ray room C, Hospital ~ None canon Inc. CXDI station 3. 200170 V6.60.02 None
3 A
X-ray room C, Hospital B station ~ X-ray room C, Hospital ~ None canon Inc. CXDI station 3. 200170 V6.60.02 None

3 B

_images/ChartCTMeanDLPhistogram.png
Plot of mean DLP for each acquisition protocol.

Histogram of Abdomen DLP values

150

g
#
Ed
e
v

8

2

mquiny

897.8 < x < 930.4

865.3 < x < 8978

832.7 < x < 865.3

800.2 = x < 8327

767.7 = x < 800.2

7350 = x < 767.7

7026 = x < 735.1

670.0 = x < 7026

6375 < x < 6700

604.9 < x < 637.5

572,42 x < 6049

539.9 < x < 572.4

507.3 x < 539.9

4748 = x < 507.3

4422 = x < 4748

4097 = x < 442.2

377.0 = x < 409.7

3446 = x < 377.1

31202 x < 3446

279.5< x <3120

DLP range (mGy.cm)

I Al systems.

Highehars com

| Toggle fullscreen | Toggle normaised histograms |

_images/ExportsDelete.png
ot time

nuke and 5 seconds

nuces nc 0 seconds.

cconds

—

cconds

bownlasd

o017 16-183851522130 5

CEAPONZILATT 1613304657340 5

mg_nhshsp 20140716-052241362714 v

MeRpO20140716. 082415172248 c50

Hoxponz0140716 051600885745 050

_images/AdminImportMenu.png
Import patient size info g,
Previous patient size imports

_images/Home.png
03& OpenREM database browser and export

‘There are 24430 studies i this database. Page last refreshed on 21st February 2014 at 1629,

o Fluoroscopy. Mammography
10925 2 13483

CT summary table:

station name Number of studies Latest study
Hospial A, SOMATOM Defniion Edge (CT-def <) w0 3 minues ago
Cinic 8 LightSpeed Pro 32 (532.09) asan 15 minutes ago
Hospital A LightSpeed (s16-10) e 27 minvtes ago

NV Cinkc,Bograph (petc12345) 23 2days, 16 howrs ago
Fluoroscopy summary table:

Station name Number of studies Latest study

ik B, AXION ATl (AX/523456) K 6 days, 2 hows ago
‘Mammography summary table:

station name Number of studies. Latest study
Hospial B, Senograph DS ADS_43.10.1 (ammos) sass 30 seconds ago
Ciric B, Senagraph DS ADS_43.10.1 (ammot) 18 4 minutes ago
i A, Senograph DS ADS. 43.10.1 (Manimos) so1t 16 minves ago

(OpenREM version 0.36-a1 © 2014 The Royal Marsden NHS Foundaton Trust

_images/ViewSite.png
Welcome, Ed. View site / Change passvord / Log out

_images/netdicomstorescp.png
Create or modify local DICOM Store Service Class Providers

Use this form to create or modiy the details of the DICOM store node you are using on this server. This would normally be a third-party server such as
Conquest. Configuring the deails of the DICOM store node here enables the OpenREM DICOM query-retrieve functionality to work.

Advanced users can use the experimental DICOM store services built-in to OpenREM - see the advanced section below and the documentation.

Name of local store node -fewer than 64 characters, spaces allowed* |
AE Title of this node - 16 or fewer letters and numbers, no spaces |

Port: 104 is standard for DICOM but ports higher than 1024 requires fewer admin rights |

‘Advanced - test/development use only

Cancel and return to DICOM configuration summary page

_images/UserOptionsMenu.png
Chart options.

Switch charts off

View display names

_images/ChartCTSortingOptions.png
Sorting options
1DLP tirequency AtoZ
IDLP |frequency ZtoA

_images/ChartCTMeanDLPhistogramPerSystem.png
Plot of mean DLP for each acquisition protocol

Histograms of Abdomen DLP values

100

< Back to CT scanner 2 Hospital B

LLLLLLLh“JJJJJJ.J.

50

mquiny

865.3 < x < 8978

832.7 < x < 865.3

800.2 = x < 8327

767.7 = x < 800.2

7350 = x < 767.7

7026 = x < 735.1

670.0 = x < 7026

6375 < x < 6700

604.9 < x < 637.5

572,42 x < 6049

539.9 < x < 572.4

507.3 x < 539.9

4748 = x < 507.3

4422 = x < 4748

4097 = x < 442.2

377.0 = x < 409.7

3446 = x < 377.1

31202 x < 3446

279.5< x <3120

-

0

DLP range (mGy.cm)

I CT scanner 2 Hospital A Il CT scanner 2 Hospital B

I CT scanner 1 Hospital A 1% CT scanner 1 Hospital B

Highehars com

“Toggle normalised histograms

Toggle fullscreen

_images/PIDinFilter.png
Patient name:

Patient D:

backupRestorePostgreSQL.html

 Navigation

 		
 index

 		
 modules |

 		OpenREM 0.7.1 documentation »

Backing up a PostgreSQL database

Note

Content contributed by DJ Platten

These instructions are based on PostgreSQL 9.1 and OpenREM 0.5.0 running on Windows Server 2008. The database restore has been tested on Ubuntu 12.04 LTS.

As a one-off, create a PostgreSQL user called backup with a password of backup. This is easiest to do using the pgAdminIII tool: you’ll need to create a new login role. In the role privileges ensure that Can initiate streaming replication and backups is checked.

The pgAdminIII tool is available by default on Windows, but needs to be explicitly installed if using Ubuntu with the following command:

sudo apt-get install pgadmin3

For the remainder of this article I’m going to assume that your OpenREM database is called openrempostgresql.

To backup the contents of openrempostgresql to a file called backup.sql run the following at the command line in a command prompt (Windows), or terminal window (Ubuntu):

pg_dump -i -U backup -F c -b -v -f backup.sql openrempostgresql

Note that the pg_dump command needs to be in your path for this to work exactly as written. The -U backup indicates that the backup user is to carry out the task. The -F c option archives in a suitable format for input into the pg_restore command. Further information on pg_dump and backing up a PostgreSQL database can be found here: http://www.postgresql.org/docs/9.3/static/app-pgdump.html and here: http://www.postgresql.org/docs/9.3/static/backup-dump.html

Restoring a PostgreSQL database

The pg_restore command can be used to restore the database using one of the backed-up SQL files that were produced using the pg_dump command.

Use the pgAdminIII tool to ensure that there is a PostgreSQL user called openremuser.

Use pgAdminIII to create a database called openrempostgresql; set the owner to openremuser and the encoding to UTF8.

Run the following command in a command prompt window (Windows) or terminal window (Ubuntu) to restore the contents of backupFile to the openrempostgresql database, where backupFile is the file created by the pg_dump command:

pg_restore -U postgres -d openrempostgresql backupFile

Ensure that openremuser has an entry in PostgreSQL’s pg_hpa.conf file for md5 authentication:

local all openremuser md5

The PostgreSQL server will need to be restarted if you have changed pg_hpa.conf.

See http://www.postgresql.org/docs/9.3/static/backup-dump.html#BACKUP-DUMP-RESTORE for further details.

 © Copyright 2013-2015, The Royal Marsden NHS Foundation Trust.
 Created using Sphinx 1.3.5.

_images/AdminUploadButton.png
Select a file:

“ihome/medonagheires | Choose...

Upload csv to be processed

_images/skin_dose_map_scaled.png
=,

_images/AdminSizeHeaders.png
Uploading patient size data to OpenREM

From the select boxes below, choose the colum tlle that corresponds to each of the height, weight and 1D fields. In the last select
box, specify if the 1D field is the accession number or the study instance UID.

Height field: Weight field: 1d feld: 1d type:

Process the data

_images/ChartMGScatterPerSystem.png
Average glandular dose vs. compressed thickness

4.0

3.5

3.0

“ N “
I N -

(ADw) asop Jejnpue|b abesaAy

1.0

0.5

0.0

100

90

80

70

60

50

40

30

20

10

Compressed thickness (mm)

Van 2

= Van1

Room 2

Room 1

Highcharts.com

_images/ChartCTworkload24hours.png
Pie chart showing a breakdown of number of studies per weekday.

23:00:4.8% (n=14) 00:00:5.1 % (n=15) < Back to Studies per weekday

Studies per hour, 22:00:27% =8 — 01:00:3.1 % (n
Thursday

21:00:3.7% (n 02:00:5.4% (n=16)

20:00: 6.8% (1=20) 03:00: 3.1 % (n=9)

04:00: 3.1 % (n=9)
15:00:3.7% (n

)

18:00:4.8% (=14) - *'>
17:00: 4.4 % (n=13) l

16:00:5.1% (n=15)

~ 05:00:4.1% (@=12)
- 06:00:3.7% (n=11)
 07:00:3.7% (@=11)

 0800:3.4%(=10)

 0900:27% (=8

15:00: 4.4% (1=13) 10:00: 4.1 % (1=12)

14:00: 4.8% (n=14) 11:00:5.1 %,

5

13:00:3.4% (1=10) 12:00: 4.8% (n=14)

Highcharts com
Click on a segment to be taken to a pie chart showing the breakdown per hour for that weekday

Toggle fullscreen

_images/HomeNoUsers.png
There are no users in any of the groups

‘You will need to allocate users to a group before using this system - you can o this here. You wil need to know the superuser usemame and
password you used when you installed the atabase.

Make sure there s at least one Admin user. You can return to the user config page later by using the 'Manage users' link on the admin menu

_images/AdminSizeImporting.png
Import tasks in progress
Filename Import started Progress

sizeupload/CT20120319-20130228.csv. 5 seconds ago Processing row 46 of 59183

_images/skinDoseMap2D.png
Caleulated peak skin dos=:1.004 Gy Toggle fullscreen 1004

Prantom dmensons: 70x34x20 cm (O]

Assumed patent height: 179 m

Assumed patent mass: 73.2k0 0008
0803
0708
0603
0502
Losa
Lot

0.16 Gy

-0z
0100

Show overtay Save2Dmap | _ggn

kosmos | usov | {0000y mn aspiasea cose
Colourscales | Toggle 203D view | el | 1.004 Gy max. displayed dose

_images/CTExportSummaryPage.png
Kot o pe 16110 103 OB IIS
[e AR ———

sueppesapion ey oo vocsire ey
et sl [e
Jmitretum o B s
£ o vt R

5 e e i
il i
3 et P i
5 Ve T H
4 e))l
= s o) ity B
2 e e o P) e H

2 ot) D oo

Gacesmeins

8 et S] oo
2 s o (i [
b e [——
2 ssomeran v adoll bk o e
5 e - oaon i) Cohacmcsr s i
5 oo Aoder o i) [rea—
5 et S, 7 e 2o s 8P A0k

5 Tt S S)

s
oo

sy
ncores 20

P WSS S S — S—

_images/skinDoseMap3D.png
Calculated peak skin dose:1.004 Gy
[r——— P
‘Assumed patient height: 1.79 m
Assumed patient mass: 732k

_images/QRmenu.png
Imports + | Ex

Import patient size info
Previous patient size imports

Query remote server

_images/ConfigMenuDelete.png
User level config

Chart options
Switch charts off

Systom lovel config
Manage users

View and edit display names
DICOM object delete settings
DICOM network configuration
Patient ID settings

_images/ChartCTMeanDLP.png
Plot of mean DLP for each acquisition protocol.

1500

g

Mean DLP (mGy.cm)
g

Mean DLP per acquisition protocol

uawopay.

Sorting options
1DLP ffrequency AtoZ
IDLP |frequency Zto A

Toggle fullscreen

o T T T T T

s
baspran
ot
PRy
prat spoun

Acquisition protocol

I Al systems.
Highcharts com
Click on an individual column to show a histogram of data for that acquisition protocol
Click on a histogram bin tooltip to see the studies that contain the acquisitions in the bin. Note that this will
include acquisitions at the upper bin boundary, so in some cases may display more data than shown in the
histogram bin

_images/CTDetail.png
Detail list of events

+ Accession rumber. 30462362354
- Sty dae: 23300 2013

- Sudytme: 117 pm.

- Sty descrpion: Dual EnergyDE TAP_ IV ()

- Requesied procedure: CT Thorax abdomen and pehis with contast
« Paientage: 528

- Patent heght and weight: 190 cm, 55 kg

+ Hospal:Clic B

- Scanner: SIEMENS | SOMATOM Defnion Flash | CTAWP?3291

- Sty UID: 12540.113564.9.1 27282345238.69.2 508347452734
+ Comment.

« Test paent ndcatos? None.

Acquisifon Type CTDNol DLP Scanning kVp mA Max Esposure Pitch Exposure Sice Collmation Xray
protocol mey mGyem length mA time per time(s) thickness (mm) modulation
(mm) rotation () type
©
Topogam Consam 014 126 @3 120 3 % Nove 10 050 360 ore
ngle
Acquision

Comment nerna technicl scan parameters: Organ Characierisic = Thorax, Body Size = Adul Body Region = Body, X 2y Modulaion Type = OFF
Topogam Cosuam 018 1154 me 120 3 % Nowe 840 0so0 260 orF
angle
Acquision

‘Comment nerna echnicl scan parameters: Organ Characierisic = Thorax, ody St

A, Body Region = 8ody, X-ray Modulaion Type = OFF.

Premoniorng | Swionary 162 182 10 120 55 s o0 Noe 0500 10000 1000 OFF
Acquision

‘Comment nerna technicalscan parameters: Organ Characierisic = Abdomen, Body Size = Aduf, Body Regon = Body, X-1ay Modulation Type = OFF

Moniorng Swionary 721 721 10 120 55 0 o030 Noe 2000 10000 1000 OFF
Acquision

‘Comment nerna technicalscan parameters: Organ Characierisic = Abdomen, Body Size = Aduf, Body Regon = Body, X.1ay Modlation Type = OFF
DETAP Sl B1l 663 797 10 165 43 OS50 080D 250 060 1820 XYZEC
Acquision
w0 13 w7 050

‘Comment nerna echnical scan parameters: Organ Chavacierisie = Abdomen, Body Size = Adull, Body Region = Body. -ray Modulation Type = XYZ_EC, S0
Filer (Tube B) = yes.

_images/ChartCTacquisitionFreq.png
Pie chart showing a breakdown of acquisition protocol frequency.

AxialHead: 8.3 % (n=250)

Whole head: 8.3 % (n=250)

Abdomen: 33.3 % (n=999)

Thorax: 16.6% (1=499)

HeadSeq: 16.7% (n=500) Chest: 16.7 % (n=500)

Highchars.com

Toggle fullscreen

_images/DicomDeletePolicyMod.png
Modify DICOM object deletion policy

Do you want objects that we can't do anything with to be
deleted?

) Delete objects that don't match any import
functions?

The remaining choices are for DICOM objects we have
processed and attempted to import to the database:

) Delete radiation dose structured reports after
processing?

) Delete mammography images after processing?
) Delete radiography images after processing?

) Delete Philips CT dose info images after
processing?

_images/ChartMGScatter.png
Average glandular dose vs. compressed thickness

4.0

3.5

3.0

o mele o

o wme e

. oo oece

o esleee
n < 5 <
N N - =

(ADw) asop Jejnpue|b abesaAy

0.5

0.0

100

90

80

70

60

50

40

30

20

10

Compressed thickness (mm)

« All systems

Highcharts.com

_images/Groups.png
A Staff status
Designates whather the usercan log int this admin st

A Superuser status
Designate tha tis user has ll permisions ithout explictly assiging them.

Groups:
Available groups © Chosen groups -
admingroup,
Filtar
al i
pidaroup Vievgroup.
importargroup impertsiagroue
©
(<]
Choose all O © Remove all

The groups this user belongs to. A user willge all permissions granted t eachofther groups. Hld down "Control,or"Command” on a Mac, o select
‘mors than one.

_static/down.png

_static/comment.png

_images/ChartOptions.png
General chart options

Plot charts? @

Average to use:
Default sorting direction:

Plot a series per system:
Number of histogram bins{20

Submit
CT chart options

DLP per acq “
CTDle per acquisition:)
Acquisition frequency: “
DLP per study: “
Study frequency: “

DLP per requested procedure:
Requested procedure frequency:

Study workload: “

Study DLP over time: “

Time period:

Default chart sorting: equengy
Submit

Radiographic chart options

DAP per acquisitior
Acquisition frequency: “
DAP per study:

Study frequency:

DAP per requested procedure:
requested procedure frequency:

KVp per acquisitior “
mAs per acquisition: “
Study workload: “

Default chart sorting: Frequency

Submit

_images/ChartCTworkload.png
Pie chart showing a breakdown of number of studies per weekday.

- Eri 201
£14.6% (n=291 Saturday: 141 % (n=281)

Studies per
day of the week

Highcharts com
Click on a segment to be taken to a pie chart showing the breakdown per hour for that weekday.

Toggle fullscreen

_images/CTExportAllData.png
s~ s s o g
=—mne—— I L _ L L i

_images/openrem0105.png

_images/skinDoseMap2DincOverlay.png
Caloulated peak skin dos=:1.004 Gy Superior Toggle fullscreen 1.008
Frentom dmensans: 70xa$:20 am ()
szumed pstent negnt. 178 m

. o
z - s z
g B ! E;
z 2 g g
B 3 -
Hide overlay Inferior Save 2D map —0.000

kosmos | Usov | {0000y mn aspiasea cose
Colourscales | Toggle 203D view | el | 1.004 Gy max. displayed dose

_images/skinDoseMapColourScales.png
Colour scale choice

Hide colour scales

_images/ModifyPtIDStorage.png
Modify Patient ID storage settings

Store the data? If stored, encrypt?
patient name “
patientiD .

Patient date of birth

Accession number

Submit

_images/ChartCTMeanDLPoverTime.png
Line plot showing mean DLP of each stu over time (months!

1400 _
Reset zoom -
1200
B
5
€
= 1000 - Brain (Adult)
a =+ Chest_Abdomen (Adult)
= Head
= ~* HeadBrain (Adult)
800 ThoraxAChest_Liver (Adult)
500
- - = = - - = = - = = - - = Highcharts.com

Click on the legend entries to show or hide the corresponding series. Click and drag the mouse over a date range to zoom in

Toggle fullscreen

_images/DicomDeletePolicyReview.png
DICOM object delete settings

You can configure whether objects will be deleted once they have been processed

The unmatched objects setting only applies to DICOM objects sent to the OpenREM DICOM Store Server. All the other
settings apply to any objects processed by OpenREM - whether through the DICOM Store Server or by using the
command line scripts (eg openrem_rdsr.py).

Settings for all Store SCPs

After processing incoming objects, delete...

unmatched objects? False
Radiation Dose Structured Reports? False
Mammography images? False
Radiology images? False

Philips CT dose info images? False

_static/file.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/plus.png

_static/up-pressed.png

_static/up.png

_static/comment-close.png

_static/minus.png

_static/down-pressed.png

_images/CTFilter.png
+ Not: T o st o evon 53
* Epeniscsy
* Gponio s

o 1234.30225 304 205 e

nstuton. ks Wodel | satin o

ames

e

cmcs

ancs

e

e

‘seves| sousTO trien
el CTAIPIzSS

‘eS| souATOM frien
ol CTANPIZSS

eS| sousTO fien
Fi | CTawpagaTS

eS| sousTOM fion
Fi | CTawpagaTa

Seens| sousTO tion
ol CrAnPIzSS

Seens] souATOM i
ol CTANPIZSS

S| U O Dfsion
e | Crawnasars

S| SoUATOM Dt
e

S| SOUATOM Dt
| Crawrazars

SN SOUATOM Dt
el GraneIzss

SEAENS| SOMATOM Devition

Sty dosrpion| acossion

e (i |

T Py |

e Tarizy |

Nesesin A2k k)
Iabassseizs

haese ey |
sz

hrme e |
ssioas

e —
s

ekt 13 ki |
sz

e
sz

e 1ae Py |
e

o

Namberat

‘oo Lonath raduce
ot nyem

o [

Sty ase

[E—

aesrion
L —
L —

_images/OpenSkinExport.png
openSkin radiation exposure incidence map

You can export this study to a csv file in the format required by Jonathan Cole's openSkin software. The
‘openskin software can be downloaded from the openSkin BitBucket project and there is more information
available in the OpenREM documentation

This version of OpenREM has openSkin built-in, and is able to calculate and display skin dose maps for some x-
ray systems. However, this option is switched off for your installation at the moment. It can be enabled by an
‘administrator by changing the Skin dose map settings.

Warning: Only copper fiters are considered in this export - aluminium or other filters are not considered. This is
related to the way openskin works.

Create OpensSkin export. (Not available if you don't have export pemissions.)

_images/storenodealive.png
 server is alive.

