

Bienvenidos a la documentación de OpenREM

[image: OpenREM logo]
OpenREM es una herramienta gratuita, es de código abierto y permite monitorizar las dosis de radiación en pacientes. El software es capaz de importar y mostrar datos de una gran gama de fuentes de dosis de rayos X con filtros, gráficos y análisis. También permite la fácil exportación de datos en un formato adecuado para mayores análisis por parte del personal físico medico calificado.

Por favor vea openrem.org [https://openrem.org] por mas detalles.

Estos documentos corresponden a la version de OpenREM actualmente en desarollo. Por la actual version disponible, vea https://docs.openrem.org/

Estos documentos están en Español (México) y en Inglés Británico - si quieres ayudar a traducirlo a otros lenguajes por favor ponerse en contacto con: @_OpenREM [https://twitter.com/_OpenREM], Bitbucket [https://bitbucket.org/openrem/openrem/issues/855/add-other-languages-as-people-volunteer], Google Groups o diríjase a Weblate [https://hosted.weblate.org/projects/openrem/] para comenzar. Más detalles: Translating OpenREM strings.

Contenidos:

	Instalación
	Installation options

	Bases de dato

	Advanced server configuration

	Start all the services
	Test web server

	Configure the settings

	Start using it - add some data!

	Configuration and administration
	Home page options

	Delete objects configuration

	Display names and user-defined modalities

	Not-patient indicator settings

	Patient identifiable data

	Deleting studies

	Adding patient size information from csv using the web interface

	Adding patient size information from csv using the command line

	Fluroscopy high dose alerts

	Task management

	Importing data to OpenREM
	From local DICOM files

	Direct from modalities

	Query-retrieve from a PACS or similar

	Navigating, filtering and study details
	Navigating the OpenREM web interface

	Filtering for specific studies

	Setting the number of studies displayed per page

	Viewing study details

	Charts
	Chart types

	Chart options on the modality pages

	Additional chart options on the Config page

	Available CT charts

	Available radiographic charts

	Available fluoroscopy charts

	Available mammography charts

	Available nuclear medicine charts

	Standard name mapping
	Introduction

	Creating a new standard name mapping

	Modifying an existing standard name mapping

	Charts

	Skin dose maps
	Functionality that is available

	Skin dose map settings

	Exporting data to openSkin

	Instructions for openSkin

	Limitations

	References

	Exporting study information
	Exporting to csv and xlsx sheets

	Specific modality export information

	Opening csv exports in Excel

	Troubleshooting
	General Docker troubleshooting

	Other Docker errors

	OpenREM log files

	Older stuff

	Log files

	Starting again!

	Developers
	Creating a development environment

	Running the test suite

	Translating OpenREM strings

	Enabling debug toolbar

	DICOM import modules

	Non-DICOM import modules

	Export from database

	Tools and helper modules

	Models

	Filtering code

	Views

	Export Views

	Forms

	Charts

	DICOM networking modules

	BackgroundTask

	Adding new charts

	Indices y tablas

	Release Notes and Change Log
	Version history change log

	Release notes and upgrade instructions

	Contributing authors

	Diagram of system components
	Alternatives

Indices y tablas

	Índice

	Índice de Módulos

	Página de Búsqueda

Instalación

Installation options

There are three supported installation options for OpenREM v1.0:

	Docker

	Native install on Linux

	Native install on Windows

Docker

This is the quickest and easiest way of installing a fully functioning OpenREM instance, complete with database,
web server and DICOM server, on any operating system that supports Docker with Linux containers. This includes Windows
10 with Docker Desktop, but currently excludes Windows Server, though this may change with availability of WSL2 for
Windows Server 2022.

The Docker installation has mostly been tested with Ubuntu server, but has also been used successfully with Podman on
Redhat Enterprise Linux and other distributions.

Existing Windows or Linux installations of OpenREM 0.10 can be upgraded to run in a Docker installation.

It is advisable that the server OpenREM is installed on has access to the internet to get images from Docker and
security updates for the operating system. However, if this is not possible the Docker images can be obtained on a
computer that does have access to the internet and transferred to the “offline” server for installation.

	Docker install

	Upgrade to Docker

	Instalación de Docker sin conexión

Native install on Linux

A native installation on Linux requires Python, a webserver (eg Nginx) a database (ideally PostgreSQL) and a DICOM
server (ideally Orthanc) to be installed, with OpenREM and all the other dependencies being installed via Pip.

Existing installations of OpenREM 0.10 can be upgraded, but this release requires a different version of Python to
the older releases, and some services that were previously required are no longer needed. Full upgrade instructions are
provided, based on an Ubuntu Server installation.

	Native Linux install

	Upgrading a native Linux install

	Upgrading to a new Linux server

	Offline installation or upgrade

	Upgrade to OpenREM 0.10.0 from 0.7.3 or later

Native install on Windows

A native installation on Windows Server requires Python, a database (ideally PostgreSQL) and a DICOM server (ideally
Orthanc) to be installed, with OpenREM and all the other dependencies being installed via Pip. IIS is the recommended
webserver to use on Windows.

This installation process can be used with Windows 10 (and probably 11), but this is not advised for production use as
Windows 10 and 11 are not designed to be servers.

As for native Linux installs, existing installations of OpenREM 0.10 can be upgraded, but this release requires a
different version of Python to the older releases, and some services that were previously required are no longer needed.
Full upgrade instructions are provided, based on a Windows Server 2019 installation.

	Native Windows install

	Upgrading a native Windows install

	Upgrading to a new Windows server

	Offline installation or upgrade

	Upgrade to OpenREM 0.10.0 from 0.7.3 or later

Bases de dato

	Database administration
	Docker installations

	Linux installations

	Windows installations

Advanced server configuration

	Webserver configuration
	Webserver timeout

	Adding an SSL certificate

	Running the OpenREM website in a virtual directory
	Docker setup

	Non-Docker install

Docker install

Preparation

	Install Docker and Docker Compose (may be installed automatically with Docker)

	Download https://bitbucket.org/openrem/docker/get/1.0.0b2.zip

Install

	Extract the ZIP file and open a shell (command prompt) in the new folder

	Customise variables in the following two files:

	.env.prod

	the orthanc_1 section of docker-compose.yml

	If you are using SELinux, you will also need to edit the nginx and orthanc bind mounts in docker-compose.yml

A full description of the options are found in:

	Configuración del Docker env

	DICOM store configuration (Orthanc)

	Docker SELinux configuration

Start the containers with:

$ docker-compose up -d

Get the database and translations ready:

$ docker-compose exec openrem python manage.py makemigrations remapp --noinput
$ docker-compose exec openrem python manage.py migrate --noinput
$ docker-compose exec openrem python manage.py loaddata openskin_safelist.json
$ docker-compose exec openrem python manage.py collectstatic --noinput --clear
$ docker-compose exec openrem python manage.py compilemessages
$ docker-compose exec openrem python manage.py createsuperuser

Open a web browser and go to http://localhost/

If you want to run the OpenREM in a virtual directory (like http://server/dms/) there is further configuration to be
done - go to Running the OpenREM website in a virtual directory.

Configuración del Docker env

Editar el archivo .env.prod para personalizar su instalación. No debe haber espacios entre el nombre de la variable, el = y el valor. Todo después de = hasta el final de la linea es transferido como el valor. Estos ajustes tienen efecto al iniciar o reiniciar el docker-compose.

Variables que deberían cambiar siempre

Introduzca una nueva llave secreta. Cree la suya, o genere una utilizando una herramienta como http://www.miniwebtool.com/django-secret-key-generator/ para esto:

SECRET_KEY=

DJANGO_ALLOWED_HOSTS is a string of hostnames or IPs with a space between each:

	nginx is required for internal use

	localhost 127.0.0.1 [::] allows access on the server using the localhost name or IP (using IPv4 or IPv6)

	add the name and/or IP address of your server so it can be accessed from other computers on your network.

For example: DJANGO_ALLOWED_HOSTS=nginx localhost 127.0.0.1 [::1] myservername

DJANGO_ALLOWED_HOSTS=nginx localhost 127.0.0.1 [::1]

Variables para ayudarnos a depurar problemas

Establecer en 1 para permitir el modo de depuración de Django.

DEBUG=

Establecer el nivel de log. Las opciones son DEBUG, INFO, WARNING, ERROR, and CRITICAL, con menos logs progresivamente.

LOG_LEVEL=
LOG_LEVEL_QRSCU=
LOG_LEVEL_EXTRACTOR=

Variables a ser modificadas para su ambiente

Parámetros del servidor de E-mail

EMAIL_HOST=
EMAIL_PORT=
EMAIL_HOST_USER=
EMAIL_HOST_PASSWORD=
EMAIL_USE_TLS=
EMAIL_USE_SSL=
EMAIL_DOSE_ALERT_SENDER=
EMAIL_OPENREM_URL=

El nombre del host y el puerto para el servidor de e-mail que usted desee utilizar debe ser ingresado en los campos EMAIL_HOST and EMAIL_PORT. El EMAIL_HOST puede ser el servidor de Outlook/Exchange de su institución.

Si en los ajustes de servidor de e-mail solo se le permite usuarios autenticados a enviar mensajes se debe utilizar un usuario y contraseña adecuado que sera ingresado en los campos EMAIL_HOST_USER y EMAIL_HOST_PASSWORD. Si este enfoque se utiliza entonces debería ser util el solicitar que la cuenta de e-mail sea creada específicamente para enviar estos mensajes de alerta de OpenREM.

Debería ser posible configurar el servidor de e-mail para permitir el envió de mensajes que se originen desde el servidor de OpenREM sin autenticación, en estos casos el usuario y la contraseña no serán requeridos.

Las opciones EMAIL_USE_TLS y EMAIL_USE_SSL deben ser configuradas para coincidir con los requerimientos de cifrado del servidor de e-mail. Utilizando 0 para falso (por defecto) y 1 para Verdadero. Solo una de estas opciones debe ser configurada a 1.

El EMAIL_DOSE_ALERT_SENDER debería contener la dirección del e-mail que se quiere utilizar como dirección remitente.

El EMAIL_OPENREM_URL debe contener la URL de su instalación de OpenREM para que los hipervínculos en los mensajes de alerta del e-mail funcionen correctamente.

Regionalización

Zona horaria local para esta instalación. Las opciones pueden ser encontradas aquí: http://en.wikipedia.org/wiki/List_of_tz_zones_by_name aunque no todas las opciones pueden estar disponibles en todos los sistemas operativos:

TIME_ZONE=Europe/London

Código de lenguaje para esta instalación. Todas las opciones pueden ser encontradas aquí: http://www.i18nguy.com/unicode/language-identifiers.html

LANGUAGE_CODE=en-us

Si esto se ajusta a Falso, Django realizara algunas optimizaciones para no cargar la maquinaria de internacionalización:

USE_I18N=True

Si se establece este valor a Falso, Django no formateará fechas, números y calendarios de acuerdo con la configuración regional actual:

USE_L10N=True

Si establece esto en Falso (predeterminado), Django no usará fechas y horas con reconocimiento de zona horaria:

USE_TZ=False

Configuración de fecha y hora XLSX para exportaciones:

XLSX_DATE=dd/mm/yyyy
XLSX_TIME=hh:mm:ss

Configuración del directorio virtual

Ver Running the OpenREM website in a virtual directory por detalles de estas variables - normalmente estas se pueden dejarse comentados.

Device Observer UID settings

OpenREM users have found one x-ray system which incorrectly sets the Device Observer UID to be equal to the Study
Instance UID. In this situation a new entry is created in the display name settings for every new exam that arrives
in OpenREM, making the display name table fill with many duplicate entries for the same system. To avoid this problem
a list of models can be specified using the variable below - OpenREM will ignore the Device Observer UID value when
creating new display names for any model in this list. The model name text must exactly match what is contained in
the system’s Manufacturer’s Model Name DICOM tag (0008,1090).

IGNORE_DEVICE_OBSERVER_UID_FOR_THESE_MODELS = ['GE OEC Fluorostar']

Variables que solo deberían ser cambiadas si sabe lo que está haciendo

Database settings
SQL_HOST=db
SQL_ENGINE=django.db.backends.postgresql
SQL_PORT=5432
DATABASE=postgres
POSTGRES_USER=openremuser
POSTGRES_PASSWORD=openrem_pass
POSTGRES_DB=openrem_prod

Paths
MEDIA_ROOT=/home/app/openrem/mediafiles
STATIC_ROOT=/home/app/openrem/staticfiles
LOG_ROOT=/logs

Variables que no deben cambiarse

Cambiar esto significará que algunas funciones de OpenREM fallarán

DOCKER_INSTALL=1

DICOM store configuration (Orthanc)

Orthanc provides the DICOM Store functionality to enable scanners to send directly to OpenREM, and for
query-retrieve to function. Configuration is in the orthanc section of docker-compose.yml

OpenREM Lua script configuration

This file is formatted as YAML:

	Strings need to quoted or placed on a new line after a |

	A : and a space separate the variable name and the value, and spaces are used at the start of the line to create
a hierarchy. See the examples below.

Edit the docker-compose.yml file to make the changes. They will take effect next time docker-compose up -d
is run.

Find the orthanc_1 definition near the end of the file.

Objects to be ignored

Lists of things to ignore. Orthanc will ignore anything matching the content of these comma separated lists: they will
not be imported into OpenREM. Some examples have been added below - note the formatting syntax.
STATION_NAMES_TO_IGNORE has the value on a new line with a | instead of being quoted, to show this syntax
option:

environment:
 MANUFACTURERS_TO_IGNORE: "{'Faxitron X-Ray LLC', 'Gendex-KaVo'}"
 MODEL_NAMES_TO_IGNORE: "{'CR 85', 'CR 75'}"
 STATION_NAMES_TO_IGNORE: |
 {'CR85 Main', 'CR75 Main'}
 SOFTWARE_VERSIONS_TO_IGNORE: "{'VixWin Platinum v3.3'}"
 DEVICE_SERIAL_NUMBERS_TO_IGNORE: "{'SCB1312016'}"

Extractor for older Toshiba CT dose summary files

Enable or disable additional functionality to extract dose information from older Toshiba and GE scanners, and specify
which CT scanners should use this method. Each system should be listed as {'Manufacturer', 'Model name'}, with
systems in a comma separated list within curly brackets, as per the example below:

environment:
 USE_TOSHIBA_CT_EXTRACTOR: "true"
 TOSHIBA_EXTRACTOR_SYSTEMS: |
 {{'Toshiba', 'Aquilion'}, {'GE Medical Systems', 'Discovery STE'},}

Physics Filtering

Set this to true if you want Orthanc to keep physics test studies, and have it
put them in the imports/physics/ folder. Set it to "false" to disable this feature

environment:
 USE_PHYSICS_FILTERING: "true"

A list to check against patient name and ID to see if the images should be kept.

environment:
 PHYSICS_TO_KEEP: "{'physics',}"

Orthanc Configuration

This section is formatted as JSON. It can contain any configuration options that appear in the standard Orthanc
orthanc.json file, but the ones that are needed for OpenREM are included
as standard and described below.

	Strings need to quoted with double quotes ".

DICOM Application Entity Title

Application Entity Title of the Store Server. Should be up to 16 characters, no spaces. This server isn’t fussy
by default, so if remote nodes connect using a different AETitle that is ok.

ORTHANC_JSON: |
 {
 // DICOM Store configuration
 "DicomAet" : "OPENREM",
 }

DICOM Port

The default port for DICOM store is set to 104.

To use a different port, change the first number of the pair in ports. The first number is the port exposed outside of
Docker, the second number is used internally by the Orthanc container.

For example, to use port 8104:

ports:
DICOM store port (first number)
 - 8104:4242

Orthanc web interface

There will normally not be any studies in the Orthanc database once they have been processed, but if you want to
enable the Orthanc web viewer, enable the port in and set RemoteAccessAllowed to true in the ORTHANC_JSON
section. The first number in the port configuration can be changed if required:

ports:
Othanc web interface
 - 8042:8042

ORTHANC_JSON: |
 {
 "Name" : "OpenREM Orthanc",
 "RemoteAccessAllowed" : true,
 "AuthenticationEnabled" : true,
 "RegisteredUsers" : {
 "orthancuser": "demo"
 },
 }

Lua script path

The path within the Orthanc container for the OpenREM Lua script is specified here - this should not be changed
(see below for advanced options).

ORTHANC_JSON: |
 {
 // OpenREM Lua Script
 "LuaScripts" : [
 "/etc/share/orthanc/scripts/openrem_orthanc_config_docker.lua"
]
 }

Advanced options

Multiple stores

If you need more than one DICOM Store server, to listen on a different port for example, copy the whole orthanc_1
section in docker-compose.yml and paste it after the orthanc_1 block. Rename to orthanc_2.

Next time docker-compose is started the additional Orthanc container will be started. docker-compose.yml is
also used to stop the containers, so if you are removing the additional Orthanc container stop the containers first.

Advanced Orthanc configuration

Any of the Orthanc configuration settings can be set in the ORTHANC_JSON section. The default configuration
can be seen on the Orthanc Server webpages [https://hg.orthanc-server.com/orthanc/file/Orthanc-1.8.2/OrthancServer/Resources/Configuration.json] including
documentation as to how they are used.

A custom version of the openrem_orthanc_config_docker.lua script can be used if required. Copy the existing one
and place the new one, with a new name, in the orthanc/ folder, and set the LuaScripts value in
ORTHANC_JSON to match.

Pay special attention to the first sections, up to the ToAscii function,
these sections have been changed for the Docker implementation.

Docker SELinux configuration

SELinux will prevent bind mounts in Docker with the standard configuration, which will be seen because Orthanc fails
to start. SELinux is commonly enabled on Red Hat, Fedora and associated distributions.

The docker-compose.yml file needs to be edited to fix this.

Change nginx configuration

Find the following section:

nginx:
 container_name: openrem-nginx
 restart: unless-stopped
 image: nginx:1.17.8-alpine
 volumes:
 - media_volume:/home/app/openrem/mediafiles
 - static_volume:/home/app/openrem/staticfiles
For SELinux (RedHat, Fedora etc), add :z to the end of next two lines
 - ./nginx-conf/conf.d:/etc/nginx/conf.d
 - ./nginx-conf/certs:/etc/ssl/private

Follow the instruction to edit the nginx-conf lines, like this:

For SELinux (RedHat, Fedora etc), add :z to the end of next two lines
 - ./nginx-conf/conf.d:/etc/nginx/conf.d:z
 - ./nginx-conf/certs:/etc/ssl/private:z

Change the Orthanc configuration

Find the following section:

orthanc_1:
 container_name: openrem-orthanc-1
 restart: unless-stopped
 image: openrem/orthanc
 volumes:
 - imports_volume:/imports
For SELinux (RedHat, Fedora etc), add :z to the end of next line
 - ./orthanc:/etc/share/orthanc/scripts/

Follow the instruction to edit the orthanc_1 line, like this:

For SELinux (RedHat, Fedora etc), add :z to the end of next line
 - ./orthanc:/etc/share/orthanc/scripts/:z

Upgrade to Docker

These instructions assume:

	You are upgrading from 0.10.0.

	You are using a PostgreSQL database in the existing installation.

	That existing Linux installs followed the instructions in the previous releases, with the openrem-function
format that changed in the 0.9.1 release (Systemd service names in Ubuntu installs).

If not you will need to adapt the instructions as necessary.

	Upgrades from 0.9.1 or earlier should review Upgrade to OpenREM 0.10.0 from 0.7.3 or later. – needs changing

	Upgrade to OpenREM 0.10.0 from 0.7.3 or later

Upgrade process from a PostgresQL database

Stop the existing services

	Linux:

$ sudo systemctl stop orthanc
$ sudo systemctl stop nginx
$ sudo systemctl stop openrem-gunicorn
$ sudo systemctl stop openrem-flower
$ sudo systemctl stop openrem-celery
$ sudo systemctl stop rabbitmq-server
$ sudo systemctl disable orthanc
$ sudo systemctl disable nginx
$ sudo systemctl disable openrem-gunicorn
$ sudo systemctl disable openrem-flower
$ sudo systemctl disable openrem-celery
$ sudo systemctl disable rabbitmq-server

	Windows: stop the following services

	Orthanc or Conquest

	IIS OpenREM site or other webserver

	Flower

	Celery

	RabbitMQ

Establish existing database details

Review the current local_settings.py for the database settings and location of the MEDIA_ROOT folder. The file
is in:

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/openremproject/local_settings.py

	Other linux: /usr/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Linux virtualenv: vitualenvfolder/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Windows: C:\Python27\Lib\site-packages\openrem\openremproject\local_settings.py

	Windows virtualenv: virtualenvfolder\Lib\site-packages\openrem\openremproject\local_settings.py

Export the database

	Open a command line window

	Windows: go to Postgres bin folder, for example:

$ cd "C:\Program Files\PostgreSQL\9.6\bin"

	Dump the database:

	Use the username (-U openremuser) and database name (-d openremdb) from local_settings.py

	Use the password from local_settings.py when prompted

	For linux, the command is pg_dump (no .exe)

	Set the path to somewhere suitable to dump the exported database file

$ pg_dump.exe -U openremuser -d openremdb -F c -f path/to/export/openremdump.bak

Set up the new installation

	Install Docker

	Download and extract https://bitbucket.org/openrem/docker/get/develop.zip and open a shell (command window) in the
new folder

	Customise variables in .env.prod, the orthanc_1 section in docker-compose.yml
and in orthanc_1.json as necessary. A full description of the options are found in:

	Configuración del Docker env

	DICOM store configuration (Orthanc)

Start the containers with:

$ docker-compose up -d

Copy the database backup to the postgres docker container and import it. If you have changed the database variables,
ensure that:

	the database user (-U openremuser) matches POSTGRES_USER in .env.prod

	the database name (-d openrem_prod) matches POSTGRES_DB in .env.prod

They don’t have to match the old database settings. The filename in both commands (openremdump.bak) should match
your backup filename.

$ docker cp /path/to/openremdump.bak openrem-db:/db_backup/

$ docker-compose exec db pg_restore --no-privileges --no-owner -U openremuser -d openrem_prod /db_backup/openremdump.bak

It is normal to get an error about the public schema, for example:

pg_restore: while PROCESSING TOC:
pg_restore: from TOC entry 3; 2615 2200 SCHEMA public postgres
pg_restore: error: could not execute query: ERROR: schema "public" already exists
Command was: CREATE SCHEMA public;

pg_restore: warning: errors ignored on restore: 1

Rename the 0.10 upgrade migration file, migrate the database (the steps and fakes are required as it is not a new
database), and create the static files:

$ docker-compose exec openrem mv remapp/migrations/0001_initial.py.1-0-upgrade remapp/migrations/0001_initial.py

$ docker-compose exec openrem python manage.py migrate --fake-initial

$ docker-compose exec openrem python manage.py migrate remapp --fake

$ docker-compose exec openrem python manage.py makemigrations remapp

$ docker-compose exec openrem python manage.py migrate

$ docker-compose exec openrem python manage.py loaddata openskin_safelist.json

$ docker-compose exec openrem python manage.py collectstatic --noinput --clear

Generate translation binary files

$ docker-compose exec openrem python manage.py compilemessages

The new OpenREM installation should now be ready to be used.

Upgrade to OpenREM 0.10.0 from 0.7.3 or later

Upgrades to OpenREM 1.0 can only be made from version 0.10.0. Installations earlier than that need to be updated
to version 0.10.0 before updating to version 1.0.

These instructions can be used to upgrade any database from version 0.7.3 or later. 0.7.3 was released in August 2016.
For upgrades from versions earlier than that, please review the upgrade instructions for that version in the
0.10.0-docs [https://docs.openrem.org/en/0.10.0-docs/release-0.7.3.html].

Upgrade preparation

Python 2.7.9 or later must be installed, but it must still be Python 2.7 and not any of the Python 3 releases.

To check the Python version, activate the virtualenv if you are using one, then:

$ python -V

If the version is earlier than 2.7.9, then an upgrade is needed. If the version is 3.x, then Python 2.7 must
be installed.

Ubuntu Linux

	Check which version of Ubuntu is installed (lsb_release -a)

	If it is 14.04 LTS (Trusty), then an operating system upgrade or migration to a new server is required. If migrating,
ensure the version of OpenREM installed on the new server is the same as the one on the old server, then
Database restore following the instructions and when up and running again perform the upgrade on the new
server

	16.04 LTS (Xenial) or later should have 2.7.11 or later available.

	For other Linux distributions check in their archives for which versions are available.

Windows

	A newer version of Python 2.7 can be downloaded from python.org [https://www.python.org/downloads] and installed
over the current version.

Linux and Windows

	With a version of Python 2.7.9 or later, setuptools can be updated (activate virtualenv if using one):

$ pip install setuptools -U

Upgrade

	Back up your database

	For PostgreSQL on linux you can refer to Database backup

	For PostgreSQL on Windows you can refer to Windows installations

	For a non-production SQLite3 database, simply make a copy of the database file

	Stop any Celery workers

	Consider temporarily disabling your DICOM Store SCP, or redirecting the data to be processed later

	If you are using a virtualenv, activate it

	Install specific versions of some packages that are needed:

$ pip install django-crispy-forms==1.8.1
$ pip install django-solo==1.1.5
$ pip install flower==0.9.5

	Install specific version of Celery:

Linux server:

$ pip install celery==4.2.2

Windows server:

D:\>pip install celery==3.1.25

	Install the new version of OpenREM:

$ pip install openrem==0.10.0

Update the configuration

Locate and edit your local_settings file

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/openremproject/local_settings.py

	Other linux: /usr/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Linux virtualenv: vitualenvfolder/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Windows: C:\Python27\Lib\site-packages\openrem\openremproject\local_settings.py

	Windows virtualenv: virtualenvfolder\Lib\site-packages\openrem\openremproject\local_settings.py

Add additional log file configuration - changed with 0.8

Add the new extractor log file configuration to the local_settings.py - you can copy the “Logging
configuration” section here if you haven’t made any changes. The addition that needs to be inserted are the
lines relating to the extractor log file. This is only for upgrading the database - the local_settings.py
file will be updated again for the upgrade to 1.0:

Logging configuration
Set the log file location. The example places the log file in the media directory. Change as required - on linux
systems you might put these in a subdirectory of /var/log/. If you want all the logs in one file, set the filename
to be the same for each one.
import os
LOG_ROOT = MEDIA_ROOT
logfilename = os.path.join(LOG_ROOT, "openrem.log")
qrfilename = os.path.join(LOG_ROOT, "openrem_qr.log")
storefilename = os.path.join(LOG_ROOT, "openrem_store.log")
extractorfilename = os.path.join(LOG_ROOT, "openrem_extractor.log")

LOGGING['handlers']['file']['filename'] = logfilename # General logs
LOGGING['handlers']['qr_file']['filename'] = qrfilename # Query Retrieve SCU logs
LOGGING['handlers']['store_file']['filename'] = storefilename # Store SCP logs
LOGGING['handlers']['extractor_file']['filename'] = extractorfilename # Extractor logs

Set log message format. Options are 'verbose' or 'simple'. Recommend leaving as 'verbose'.
LOGGING['handlers']['file']['formatter'] = 'verbose' # General logs
LOGGING['handlers']['qr_file']['formatter'] = 'verbose' # Query Retrieve SCU logs
LOGGING['handlers']['store_file']['formatter'] = 'verbose' # Store SCP logs
LOGGING['handlers']['extractor_file']['formatter'] = 'verbose' # Extractor logs

Set the log level. Options are 'DEBUG', 'INFO', 'WARNING', 'ERROR', and 'CRITICAL', with progressively less logging.
LOGGING['loggers']['remapp']['level'] = 'INFO' # General logs
LOGGING['loggers']['remapp.netdicom.qrscu']['level'] = 'INFO' # Query Retrieve SCU logs
LOGGING['loggers']['remapp.netdicom.storescp']['level'] = 'INFO' # Store SCP logs
LOGGING['loggers']['remapp.extractors.ct_toshiba']['level'] = 'INFO' # Toshiba RDSR creation extractor logs

Migrate the database

In a shell/command window, move into the openrem folder:

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/

	Other linux: /usr/lib/python2.7/site-packages/openrem/

	Linux virtualenv: vitualenvfolder/lib/python2.7/site-packages/openrem/

	Windows: C:\Python27\Lib\site-packages\openrem\

	Windows virtualenv: virtualenvfolder\Lib\site-packages\openrem\

python manage.py makemigrations remapp
python manage.py migrate remapp

Systemd service names in Ubuntu installs

Systemd service files were renamed in the the 0.9.1 docs to use openrem-function rather than function-openrem. To
update the service files accordingly, follow the following steps. This is optional, but will make finding them
easier (e.g. sudo systemctl status openrem-[tab][tab] will list them) and these names are assumed for the
Upgrade to Docker and Upgrading a native Linux install docs. However, only the gunicorn service remains after the upgrade to
1.0, so you may find it easier just to remember the only service names, or just rename that one.

sudo systemctl stop gunicorn-openrem.service
sudo systemctl stop celery-openrem.service
sudo systemctl stop flower-openrem.service

sudo systemctl disable gunicorn-openrem.service
sudo systemctl disable celery-openrem.service
sudo systemctl disable flower-openrem.service

sudo mv /etc/systemd/system/{gunicorn-openrem,openrem-gunicorn}.service
sudo mv /etc/systemd/system/{celery-openrem,openrem-celery}.service
sudo mv /etc/systemd/system/{flower-openrem,openrem-flower}.service

sudo systemctl enable openrem-gunicorn.service
sudo systemctl enable openrem-celery.service
sudo systemctl enable openrem-flower.service

sudo systemctl start openrem-gunicorn.service
sudo systemctl start openrem-celery.service
sudo systemctl start openrem-flower.service

Upgrade to 1.0

Now return to Instalación instructions to follow the instructions to 1.0 for your preferred server solution.

After upgrading to version 1.0, there will be automatic tasks that are created to populate the summary fields introduced
in version 0.10.

[image: 0.10 upgrade panel before log in]

Log in as an administrator to start the migration process. If you have
a large number of studies in your database this can take some time. A large database (several hundred studies) on slow
disks might take a day or two, on faster disks or with a smaller database it could take from a few minutes to an hour
or so. You will be able to monitor the progress on the home page as seen in the figure at the bottom of this page.

[image: 0.10 upgrade panel after log in as administrator]

One task per modality type (CT, fluoroscopy, mammography and radiography) is generated to create a task per study in
each modality to populate the new fields for that study. If the number of workers is the same or less than the number
of modality types in your database then the study level tasks will all be created before any of them are executed as
all the workers will be busy. Therefore there might be a delay before the progress indicators on the OpenREM front
page start to update. You can review the number of tasks being created on the Config -> Tasks page.

Before the migration is complete, some of the information on the modality pages of OpenREM will be missing, such as the
dose information for example, but otherwise everything that doesn’t rely on Celery workers will work as normal. Studies
sent directly to be imported will carry on during the migration, but query-retrieve tasks will get stuck behind the
migration tasks.

[image: 0.10 upgrade panel, population of fields in progress]

When the process is complete the “Summary data fields migration” panel will disappear and will not be seen again.

Configuración del Docker env

Editar el archivo .env.prod para personalizar su instalación. No debe haber espacios entre el nombre de la variable, el = y el valor. Todo después de = hasta el final de la linea es transferido como el valor. Estos ajustes tienen efecto al iniciar o reiniciar el docker-compose.

Variables que deberían cambiar siempre

Introduzca una nueva llave secreta. Cree la suya, o genere una utilizando una herramienta como http://www.miniwebtool.com/django-secret-key-generator/ para esto:

SECRET_KEY=

DJANGO_ALLOWED_HOSTS is a string of hostnames or IPs with a space between each:

	nginx is required for internal use

	localhost 127.0.0.1 [::] allows access on the server using the localhost name or IP (using IPv4 or IPv6)

	add the name and/or IP address of your server so it can be accessed from other computers on your network.

For example: DJANGO_ALLOWED_HOSTS=nginx localhost 127.0.0.1 [::1] myservername

DJANGO_ALLOWED_HOSTS=nginx localhost 127.0.0.1 [::1]

Variables para ayudarnos a depurar problemas

Establecer en 1 para permitir el modo de depuración de Django.

DEBUG=

Establecer el nivel de log. Las opciones son DEBUG, INFO, WARNING, ERROR, and CRITICAL, con menos logs progresivamente.

LOG_LEVEL=
LOG_LEVEL_QRSCU=
LOG_LEVEL_EXTRACTOR=

Variables a ser modificadas para su ambiente

Parámetros del servidor de E-mail

EMAIL_HOST=
EMAIL_PORT=
EMAIL_HOST_USER=
EMAIL_HOST_PASSWORD=
EMAIL_USE_TLS=
EMAIL_USE_SSL=
EMAIL_DOSE_ALERT_SENDER=
EMAIL_OPENREM_URL=

El nombre del host y el puerto para el servidor de e-mail que usted desee utilizar debe ser ingresado en los campos EMAIL_HOST and EMAIL_PORT. El EMAIL_HOST puede ser el servidor de Outlook/Exchange de su institución.

Si en los ajustes de servidor de e-mail solo se le permite usuarios autenticados a enviar mensajes se debe utilizar un usuario y contraseña adecuado que sera ingresado en los campos EMAIL_HOST_USER y EMAIL_HOST_PASSWORD. Si este enfoque se utiliza entonces debería ser util el solicitar que la cuenta de e-mail sea creada específicamente para enviar estos mensajes de alerta de OpenREM.

Debería ser posible configurar el servidor de e-mail para permitir el envió de mensajes que se originen desde el servidor de OpenREM sin autenticación, en estos casos el usuario y la contraseña no serán requeridos.

Las opciones EMAIL_USE_TLS y EMAIL_USE_SSL deben ser configuradas para coincidir con los requerimientos de cifrado del servidor de e-mail. Utilizando 0 para falso (por defecto) y 1 para Verdadero. Solo una de estas opciones debe ser configurada a 1.

El EMAIL_DOSE_ALERT_SENDER debería contener la dirección del e-mail que se quiere utilizar como dirección remitente.

El EMAIL_OPENREM_URL debe contener la URL de su instalación de OpenREM para que los hipervínculos en los mensajes de alerta del e-mail funcionen correctamente.

Regionalización

Zona horaria local para esta instalación. Las opciones pueden ser encontradas aquí: http://en.wikipedia.org/wiki/List_of_tz_zones_by_name aunque no todas las opciones pueden estar disponibles en todos los sistemas operativos:

TIME_ZONE=Europe/London

Código de lenguaje para esta instalación. Todas las opciones pueden ser encontradas aquí: http://www.i18nguy.com/unicode/language-identifiers.html

LANGUAGE_CODE=en-us

Si esto se ajusta a Falso, Django realizara algunas optimizaciones para no cargar la maquinaria de internacionalización:

USE_I18N=True

Si se establece este valor a Falso, Django no formateará fechas, números y calendarios de acuerdo con la configuración regional actual:

USE_L10N=True

Si establece esto en Falso (predeterminado), Django no usará fechas y horas con reconocimiento de zona horaria:

USE_TZ=False

Configuración de fecha y hora XLSX para exportaciones:

XLSX_DATE=dd/mm/yyyy
XLSX_TIME=hh:mm:ss

Configuración del directorio virtual

Ver Running the OpenREM website in a virtual directory por detalles de estas variables - normalmente estas se pueden dejarse comentados.

Device Observer UID settings

OpenREM users have found one x-ray system which incorrectly sets the Device Observer UID to be equal to the Study
Instance UID. In this situation a new entry is created in the display name settings for every new exam that arrives
in OpenREM, making the display name table fill with many duplicate entries for the same system. To avoid this problem
a list of models can be specified using the variable below - OpenREM will ignore the Device Observer UID value when
creating new display names for any model in this list. The model name text must exactly match what is contained in
the system’s Manufacturer’s Model Name DICOM tag (0008,1090).

IGNORE_DEVICE_OBSERVER_UID_FOR_THESE_MODELS = ['GE OEC Fluorostar']

Variables que solo deberían ser cambiadas si sabe lo que está haciendo

Database settings
SQL_HOST=db
SQL_ENGINE=django.db.backends.postgresql
SQL_PORT=5432
DATABASE=postgres
POSTGRES_USER=openremuser
POSTGRES_PASSWORD=openrem_pass
POSTGRES_DB=openrem_prod

Paths
MEDIA_ROOT=/home/app/openrem/mediafiles
STATIC_ROOT=/home/app/openrem/staticfiles
LOG_ROOT=/logs

Variables que no deben cambiarse

Cambiar esto significará que algunas funciones de OpenREM fallarán

DOCKER_INSTALL=1

DICOM store configuration (Orthanc)

Orthanc provides the DICOM Store functionality to enable scanners to send directly to OpenREM, and for
query-retrieve to function. Configuration is in the orthanc section of docker-compose.yml

OpenREM Lua script configuration

This file is formatted as YAML:

	Strings need to quoted or placed on a new line after a |

	A : and a space separate the variable name and the value, and spaces are used at the start of the line to create
a hierarchy. See the examples below.

Edit the docker-compose.yml file to make the changes. They will take effect next time docker-compose up -d
is run.

Find the orthanc_1 definition near the end of the file.

Objects to be ignored

Lists of things to ignore. Orthanc will ignore anything matching the content of these comma separated lists: they will
not be imported into OpenREM. Some examples have been added below - note the formatting syntax.
STATION_NAMES_TO_IGNORE has the value on a new line with a | instead of being quoted, to show this syntax
option:

environment:
 MANUFACTURERS_TO_IGNORE: "{'Faxitron X-Ray LLC', 'Gendex-KaVo'}"
 MODEL_NAMES_TO_IGNORE: "{'CR 85', 'CR 75'}"
 STATION_NAMES_TO_IGNORE: |
 {'CR85 Main', 'CR75 Main'}
 SOFTWARE_VERSIONS_TO_IGNORE: "{'VixWin Platinum v3.3'}"
 DEVICE_SERIAL_NUMBERS_TO_IGNORE: "{'SCB1312016'}"

Extractor for older Toshiba CT dose summary files

Enable or disable additional functionality to extract dose information from older Toshiba and GE scanners, and specify
which CT scanners should use this method. Each system should be listed as {'Manufacturer', 'Model name'}, with
systems in a comma separated list within curly brackets, as per the example below:

environment:
 USE_TOSHIBA_CT_EXTRACTOR: "true"
 TOSHIBA_EXTRACTOR_SYSTEMS: |
 {{'Toshiba', 'Aquilion'}, {'GE Medical Systems', 'Discovery STE'},}

Physics Filtering

Set this to true if you want Orthanc to keep physics test studies, and have it
put them in the imports/physics/ folder. Set it to "false" to disable this feature

environment:
 USE_PHYSICS_FILTERING: "true"

A list to check against patient name and ID to see if the images should be kept.

environment:
 PHYSICS_TO_KEEP: "{'physics',}"

Orthanc Configuration

This section is formatted as JSON. It can contain any configuration options that appear in the standard Orthanc
orthanc.json file, but the ones that are needed for OpenREM are included
as standard and described below.

	Strings need to quoted with double quotes ".

DICOM Application Entity Title

Application Entity Title of the Store Server. Should be up to 16 characters, no spaces. This server isn’t fussy
by default, so if remote nodes connect using a different AETitle that is ok.

ORTHANC_JSON: |
 {
 // DICOM Store configuration
 "DicomAet" : "OPENREM",
 }

DICOM Port

The default port for DICOM store is set to 104.

To use a different port, change the first number of the pair in ports. The first number is the port exposed outside of
Docker, the second number is used internally by the Orthanc container.

For example, to use port 8104:

ports:
DICOM store port (first number)
 - 8104:4242

Orthanc web interface

There will normally not be any studies in the Orthanc database once they have been processed, but if you want to
enable the Orthanc web viewer, enable the port in and set RemoteAccessAllowed to true in the ORTHANC_JSON
section. The first number in the port configuration can be changed if required:

ports:
Othanc web interface
 - 8042:8042

ORTHANC_JSON: |
 {
 "Name" : "OpenREM Orthanc",
 "RemoteAccessAllowed" : true,
 "AuthenticationEnabled" : true,
 "RegisteredUsers" : {
 "orthancuser": "demo"
 },
 }

Lua script path

The path within the Orthanc container for the OpenREM Lua script is specified here - this should not be changed
(see below for advanced options).

ORTHANC_JSON: |
 {
 // OpenREM Lua Script
 "LuaScripts" : [
 "/etc/share/orthanc/scripts/openrem_orthanc_config_docker.lua"
]
 }

Advanced options

Multiple stores

If you need more than one DICOM Store server, to listen on a different port for example, copy the whole orthanc_1
section in docker-compose.yml and paste it after the orthanc_1 block. Rename to orthanc_2.

Next time docker-compose is started the additional Orthanc container will be started. docker-compose.yml is
also used to stop the containers, so if you are removing the additional Orthanc container stop the containers first.

Advanced Orthanc configuration

Any of the Orthanc configuration settings can be set in the ORTHANC_JSON section. The default configuration
can be seen on the Orthanc Server webpages [https://hg.orthanc-server.com/orthanc/file/Orthanc-1.8.2/OrthancServer/Resources/Configuration.json] including
documentation as to how they are used.

A custom version of the openrem_orthanc_config_docker.lua script can be used if required. Copy the existing one
and place the new one, with a new name, in the orthanc/ folder, and set the LuaScripts value in
ORTHANC_JSON to match.

Pay special attention to the first sections, up to the ToAscii function,
these sections have been changed for the Docker implementation.

Instalación de Docker sin conexión

OpenREM puede correr en un servidor sin conexión a internet de ser necesario, aunque el acceso a https://hub.docker.com haría la instalación y las actualizaciones mucho mas fáciles.

The server will need to have Docker and Docker Compose installed.

Recolectar archivos de instalación

En una computadora con acceso a internet:

	Instalar Docker - esto es requerido para poder descargar las imágenes

	Descargar https://bitbucket.org/openrem/docker/get/develop.zip

	Descargar las imágenes de Docker:

$ docker pull openrem/openrem:release-1.0.0b2

$ docker pull postgres:12.0-alpine

$ docker pull openrem/nginx

$ docker pull rabbitmq:3-management-alpine

$ docker pull openrem/orthanc

	Ahora guardarlas como archivos tar:

$ docker save -o openrem.tar openrem/openrem:develop

$ docker save -o openrem-postgres.tar postgres:12.0-alpine

$ docker save -o openrem-nginx.tar openrem/nginx

$ docker save -o openrem-rabbitmq.tar rabbitmq:3-management-alpine

$ docker save -o openrem-orthanc.tar openrem/orthanc

Si tanto la computadora con acceso a internet como la destinada para server son Linux o MacOS las imágenes se pueden comprimir mas utilizando gzip, por ejemplo:

$ docker save openrem/openrem:develop | gzip > openrem.tar.gz

Copiar todos los archivos tar y los zip al servidor donde sera instalado OpenREM.

Cargar las imágenes Docker

En el servidor donde se instalara OpenREM, en la carpeta que contiene las imágenes Docker:

$ docker load -i openrem.tar

$ docker load -i openrem-postgres.tar

$ docker load -i openrem-nginx.tar

$ docker load -i openrem-rabbitmq.tar

$ docker load -i openrem-orthanc.tar

Si se comprimieron las imágenes con gzip el comando es el mismo pero con el sufijo .gz, por ejemplo:

$ docker load -i openrem.tar.gz

Comprobar que las imágenes han sido cargadas:

$ docker images

Continuar a Install

Native Linux install

Document not ready for translation

This install is based on Ubuntu 22.04 using:

	Python 3.10 running in a virtualenv

	Database: PostgreSQL

	DICOM Store SCP: Orthanc running on port 104

	Webserver: NGINX with Gunicorn

	All OpenREM files in /var/dose/ with group owner of openrem

	Collects any Physics (QA) images and zips them

The instructions should work for Ubuntu 20.04 too, references to jammy will be focal instead.

There are various commands and paths that reference the Python version 3.10 in these instructions. If you are using
Python 3.8 or Python 3.9 then these will need to be modified accordingly.

If you are upgrading an existing installation to a new Linux server, go to the Upgrading to a new Linux server docs
first.

If you are installing OpenREM on a Linux server with limited internet access, go to the Offline installation or upgrade docs.

If you are installing on a different Linux OS you can adapt these instructions or consider using a
Docker install instead.

Initial prep

Install apt packages

Apt sources

We will need the universe repository enabled. Check first:

$ less /etc/apt/sources.list

Look for:

deb http://archive.ubuntu.com/ubuntu/ jammy universe
deb http://archive.ubuntu.com/ubuntu/ jammy-updates universe

If these two lines are not there or are commented out (line starts with a #), add them in or remove the #
(sudo nano /etc/apt/sources.list).

$ sudo -- sh -c 'apt update && apt upgrade'

$ sudo apt install acl python3.10 python3.10-dev python3.10-distutils python3.10-venv python3-pip \
postgresql nginx orthanc dcmtk default-jre zip gettext

Redis

Redis is used to temporarily store the background tasks.

$ sudo apt install lsb-release

$ curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg
$ echo "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/redis.list
$ sudo apt-get update
$ sudo apt-get install redis

Folders and permissions

Groups

Now create new group openrem and add your user to it ($USER will automatically substitute for the user you are
running as):

$ sudo groupadd openrem
$ sudo adduser $USER openrem

Add orthanc and www-data users to openrem group:

$ sudo -- sh -c 'adduser orthanc openrem && adduser www-data openrem'

Nota

At a later stage, to add a second administrator just add them to the openrem group in the same way.

Folders

Create the folders we need, and set the permissions. The “sticky” group setting and the access control list
setting (setfacl) below will enable both orthanc user and www-data user as well as you and your colleagues
to write to the logs and access the “Physics” images etc:

$ sudo -- sh -c 'mkdir /var/dose && chmod 775 /var/dose'

$ sudo chown $USER:openrem /var/dose

$ cd /var/dose

$ mkdir {log,media,pixelmed,static,veopenrem3}

$ mkdir -p orthanc/dicom && mkdir -p orthanc/physics

$ sudo chown -R $USER:openrem /var/dose/*

$ sudo chmod -R g+s /var/dose/*

Find the uid of your user and the gid of the openrem group:

$ id
$ getent group openrem

Take note of the uid number and the gid in the third field of the group information and use it in the next
command, replacing 1001 (user uid) and 1002 (openrem group gid) as appropriate:

$ sudo setfacl -PRdm u:1001:rwx,g:1002:rwx,o::r /var/dose/

Pixelmed download

$ cd /var/dose/pixelmed
$ wget http://www.dclunie.com/pixelmed/software/webstart/pixelmed.jar

Create the virtualenv

Create a virtualenv (Python local environment) in the folder we created:

$ python3.10 -m venv /var/dose/veopenrem3

Activate the virtualenv

Activate the virtualenv (note the . – you can also use the word source):

$. /var/dose/veopenrem3/bin/activate

Install Python packages

$ pip install --upgrade pip

$ pip install openrem==1.0.0b2

Database and OpenREM config

Setup PostgreSQL database

Create a postgres user, and create the database. You will be asked to enter a new password (twice). This will be needed
when configuring the local_settings.py file later:

$ sudo -u postgres createuser -P openremuser

$ sudo -u postgres createdb -T template1 -O openremuser -E 'UTF8' openremdb

For upgrades use a different template

If this is an upgrade to a new Linux server and not a new install, use template0 instead:

$ sudo -u postgres createdb -T template0 -O openremuser -E 'UTF8' openremdb

Update the PostgreSQL client authentication configuration. Add the following line anywhere near the bottom of the file,
for example in the gap before # DO NOT DISABLE or anywhere in the table that follows. The number of spaces between
each word is not important (one or more). If you are not using PostgreSQL 14 then substitute the version number in the
file path.

$ sudo nano /etc/postgresql/14/main/pg_hba.conf

local all openremuser md5

Reload postgres:

$ sudo systemctl reload postgresql

Configure OpenREM

Navigate to the Python openrem folder and copy the example local_settings.py and wsgi.py files to remove the
.linux and .example suffixes:

$ cd /var/dose/veopenrem3/lib/python3.10/site-packages/openrem/
$ cp openremproject/local_settings.py{.linux,}
$ cp openremproject/wsgi.py{.example,}

Edit local_settings.py as needed - make sure you change the PASSWORD, the SECRET_KEY (to anything, just
change it), the ALLOWED_HOSTS list, regionalisation settings and the EMAIL configuration. You can modify the
email settings later if necessary. Some settings are not shown here but are documented
in the settings file or elsewhere in the docs. For details on the final variable see Systems where Device Observer UID is not static.

Upgrading to a new server

If you are upgrading to a new Linux server, review the local_settings.py file from the old server to copy over
the NAME, USER and PASSWORD, ALLOWED_HOSTS list and the EMAIL configuration, and check all the
other settings. Change the SECRET_KEY from the default, but it doesn’t have to match the one on the old server.
For details on the final variable see Systems where Device Observer UID is not static.

$ nano openremproject/local_settings.py

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': 'openremdb',
 'USER': 'openremuser',
 'PASSWORD': 'mysecretpassword', # This is the password you set earlier
 'HOST': '',
 'PORT': '',
 }
}

MEDIA_ROOT = '/var/dose/media/'

STATIC_ROOT = '/var/dose/static/'
JS_REVERSE_OUTPUT_PATH = os.path.join(STATIC_ROOT, 'js', 'django_reverse')

Change secret key
SECRET_KEY = 'hmj#)-$smzqk*=wuz9^a46rex30^$_j$rghp+1#y&i+pys5b@$'

DEBUG mode: leave the hash in place for now, but remove it and the space (so DEBUG
is at the start of the line) as soon as something doesn't work. Put it back
when you get it working again.
DEBUG = True

ALLOWED_HOSTS = [
 # Add the names and IP address of your host, for example:
 'openrem-server',
 'openrem-server.ad.abc.nhs.uk',
 '10.123.213.22',
]

LOG_ROOT = '/var/dose/log'
LOG_FILENAME = os.path.join(LOG_ROOT, 'openrem.log')
QR_FILENAME = os.path.join(LOG_ROOT, 'openrem_qr.log')
EXTRACTOR_FILENAME = os.path.join(LOG_ROOT, 'openrem_extractor.log')

Removed comment hashes to enable log file rotation:
LOGGING['handlers']['file']['class'] = 'logging.handlers.RotatingFileHandler'
LOGGING['handlers']['file']['maxBytes'] = 10 * 1024 * 1024 # 10*1024*1024 = 10 MB
LOGGING['handlers']['file']['backupCount'] = 5 # number of log files to keep before deleting the oldest one
LOGGING['handlers']['qr_file']['class'] = 'logging.handlers.RotatingFileHandler'
LOGGING['handlers']['qr_file']['maxBytes'] = 10 * 1024 * 1024 # 10*1024*1024 = 10 MB
LOGGING['handlers']['qr_file']['backupCount'] = 5 # number of log files to keep before deleting the oldest one
LOGGING['handlers']['extractor_file']['class'] = 'logging.handlers.RotatingFileHandler'
LOGGING['handlers']['extractor_file']['maxBytes'] = 10 * 1024 * 1024 # 10*1024*1024 = 10 MB
LOGGING['handlers']['extractor_file']['backupCount'] = 5 # number of log files to keep before deleting the oldest one

Regionalisation settings
Date format for exporting data to Excel xlsx files.
Default in OpenREM is dd/mm/yyyy. Override it by uncommenting and customising below; a full list of codes is
available at https://msdn.microsoft.com/en-us/library/ee634398.aspx.
XLSX_DATE = 'mm/dd/yyyy'
Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
although not all choices may be available on all operating systems.
In a Windows environment this must be set to your system time zone.
TIME_ZONE = 'Europe/London'
Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = 'en-us'

DCMTK_PATH = '/usr/bin'
DCMCONV = os.path.join(DCMTK_PATH, 'dcmconv')
DCMMKDIR = os.path.join(DCMTK_PATH, 'dcmmkdir')
JAVA_EXE = '/usr/bin/java'
JAVA_OPTIONS = '-Xms256m -Xmx512m -Xss1m -cp'
PIXELMED_JAR = '/var/dose/pixelmed/pixelmed.jar'
PIXELMED_JAR_OPTIONS = '-Djava.awt.headless=true com.pixelmed.doseocr.OCR -'

E-mail server settings - see https://docs.djangoproject.com/en/2.2/topics/email/
EMAIL_HOST = 'localhost'
EMAIL_PORT = 25
EMAIL_HOST_USER = ''
EMAIL_HOST_PASSWORD = ''
EMAIL_USE_TLS = 0 # Use 0 for False, 1 for True
EMAIL_USE_SSL = 0 # Use 0 for False, 1 for True
EMAIL_DOSE_ALERT_SENDER = 'your.alert@email.address'
EMAIL_OPENREM_URL = 'http://your.openrem.server'

IGNORE_DEVICE_OBSERVER_UID_FOR_THESE_MODELS = ['GE OEC Fluorostar']

Now create the database. Make sure you are still in the openrem python folder and
the virtualenv is active — prompt will look like

(veopenrem3)username@hostname:/var/dose/veopenrem3/lib/python3.10/site-packages/openrem/$

Otherwise see Activate the virtualenv and navigate back to that folder.

Upgrading to a new server

If you are upgrading to a new Linux server, use these additional commands before continuing with those below:

$ mv remapp/migrations/0001_initial.py{.1-0-upgrade,}

Import the database - update the path to the database backup file you copied from the old server:

$ pg_restore --no-privileges --no-owner -U openremuser -d openremdb /path/to/pre-1-0-upgrade-dump.bak

Migrate the database:

$ python manage.py migrate --fake-initial

$ python manage.py migrate remapp --fake

$ python manage.py makemigrations remapp
$ python manage.py migrate
$ python manage.py loaddata openskin_safelist.json
$ python manage.py collectstatic --no-input --clear
$ python manage.py compilemessages
$ python manage.py createsuperuser

Webserver

Configure NGINX and Gunicorn

Copy in the OpenREM site config file

$ cd /var/dose/veopenrem3/lib/python3.10/site-packages/openrem/
$ sudo cp sample-config/openrem-server /etc/nginx/sites-available/openrem-server

Nota

Content of NGINX config file:

server {
 listen 80;
 server_name openrem-server;

 location /static {
 alias /var/dose/static;
 }

 location / {
 proxy_pass http://unix:/tmp/openrem-server.socket;
 proxy_set_header Host $host;
 proxy_read_timeout 300s;
 }
}

Remove the default config and make ours active:

$ sudo rm /etc/nginx/sites-enabled/default

$ sudo ln -s /etc/nginx/sites-available/openrem-server /etc/nginx/sites-enabled/openrem-server

Copy the Gunicorn systemd service file into place:

$ cd /var/dose/veopenrem3/lib/python3.10/site-packages/openrem/
$ sudo cp sample-config/openrem-gunicorn.service /etc/systemd/system/openrem-gunicorn.service

Nota

Content of systemd file:

[Unit]
Description=Gunicorn server for OpenREM

[Service]
Restart=on-failure
User=www-data
WorkingDirectory=/var/dose/veopenrem3/lib/python3.10/site-packages/openrem

ExecStart=/var/dose/veopenrem3/bin/gunicorn \
 --bind unix:/tmp/openrem-server.socket \
 openremproject.wsgi:application --timeout 300

[Install]
WantedBy=multi-user.target

Copy the task queue consumer systemd service file into place:

$ cd /var/dose/veopenrem3/lib/python3.10/site-packages/openrem/
$ sudo cp sample-config/openrem-consumer.service /etc/systemd/system/openrem-consumer.service

Nota

Content of systemd file:

[Unit]
Description=Huey consumer for OpenREM

[Service]
Restart=on-failure
User=www-data
WorkingDirectory=/var/dose/veopenrem3/lib/python3.10/site-packages/openrem

ExecStart=/var/dose/veopenrem3/bin/python \
 manage.py run_huey

[Install]
WantedBy=multi-user.target

Load the new systemd configurations:

$ sudo systemctl daemon-reload

Set the new Gunicorn and consumer services to start on boot:

$ sudo systemctl enable openrem-gunicorn.service
$ sudo systemctl enable redis-server.service
$ sudo systemctl enable openrem-consumer.service

Start the Gunicorn and consumer services, and restart the NGINX service:

$ sudo -- sh -c 'systemctl start openrem-gunicorn.service && systemctl start redis-server.service && systemctl start openrem-consumer.service && systemctl restart nginx.service'

Test the webserver

You should now be able to browse to the OpenREM server from another PC.

You can check that NGINX and Gunicorn are running with the following two commands:

$ sudo systemctl status openrem-gunicorn.service

$ sudo systemctl status nginx.service

DICOM Store SCP

Copy the Lua file to the Orthanc folder. This will control how we process the incoming DICOM objects.

$ cd /var/dose/veopenrem3/lib/python3.10/site-packages/openrem/
$ cp sample-config/openrem_orthanc_config_linux.lua /var/dose/orthanc/

Edit the Orthanc Lua configuration options:

$ nano /var/dose/orthanc/openrem_orthanc_config_linux.lua

Set use_physics_filtering to true if you want Orthanc to keep physics test studies, and have it put them in the
/var/dose/orthanc/physics/ folder. Set it to false to disable this feature. Add names or IDs to
physics_to_keep as a comma separated list.

-- Set this to true if you want Orthanc to keep physics test studies, and have it
-- put them in the physics_to_keep_folder. Set it to false to disable this feature
local use_physics_filtering = true

-- A list to check against patient name and ID to see if the images should be kept.
-- Orthanc will put anything that matches this in the physics_to_keep_folder.
local physics_to_keep = {'physics'}

Lists of things to ignore. Orthanc will ignore anything matching the content of these comma separated lists; they will
not be imported into OpenREM.

-- Lists of things to ignore. Orthanc will ignore anything matching the content of
-- these lists: they will not be imported into OpenREM.
local manufacturers_to_ignore = {'Faxitron X-Ray LLC', 'Gendex-KaVo'}
local model_names_to_ignore = {'CR 85', 'CR 75', 'CR 35', 'CR 25', 'ADC_5146', 'CR975'}
local station_names_to_ignore = {'CR85 Main', 'CR75 Main'}
local software_versions_to_ignore = {'VixWin Platinum v3.3'}
local device_serial_numbers_to_ignore = {'SCB1312016'}

Enable or disable additional functionality to extract dose information from older Toshiba and GE scanners, and specify
which CT scanners should use this method. Each system should be listed as {'Manufacturer', 'Model name'}, with
systems in a comma separated list within curly brackets, as per the example below:

-- Set this to true if you want to use the OpenREM Toshiba CT extractor. Set it to
-- false to disable this feature.
local use_toshiba_ct_extractor = true

-- A list of CT make and model pairs that are known to have worked with the Toshiba CT extractor.
-- You can add to this list, but you will need to verify that the dose data created matches what you expect.
local toshiba_extractor_systems = {
 {'Toshiba', 'Aquilion'},
 {'GE Medical Systems', 'Discovery STE'},
}

Edit the Orthanc configuration:

$ sudo nano /etc/orthanc/orthanc.json

Add the Lua script to the Orthanc config:

// List of paths to the custom Lua scripts that are to be loaded
// into this instance of Orthanc
"LuaScripts" : [
"/var/dose/orthanc/openrem_orthanc_config_linux.lua"
],

Set the AE Title and port:

// The DICOM Application Entity Title
"DicomAet" : "OPENREM",

// The DICOM port
"DicomPort" : 104,

Nota

Optionally, you may also like to enable the HTTP server interface for Orthanc (although if the Lua script is removing
all the objects as soon as they are processed, you won’t see much!):

// Whether remote hosts can connect to the HTTP server
"RemoteAccessAllowed" : true,

// Whether or not the password protection is enabled
"AuthenticationEnabled" : false,

To see the Orthanc web interface, go to http://openremserver:8042/ – of course change the server name to that of your
server!

Allow Orthanc to use DICOM port

By default, Orthanc uses port 4242. If you wish to use a lower port, specifically the DICOM port of 104, you will need
to give the Orthanc binary special permission to do so:

$ sudo setcap CAP_NET_BIND_SERVICE=+eip /usr/sbin/Orthanc

Finish off

Restart Orthanc:

$ sudo systemctl restart orthanc.service

New users, and quick access to physics folder

This is for new Linux users; for new OpenREM users, refer to Configure the settings

If you left local use_physics_filtering = true in the Orthanc configuration, you might like to give your colleagues
a quick method of accessing
the physics folder from their home folder. Then if they use a program like WinSCP [https://winscp.net] it is easy to find and copy the QA
images to another (Windows) computer on the network. WinSCP can also be run directly from a USB stick if you are unable
to install software :-)

Add the new user (replace newusername as appropriate):

$ sudo adduser newusername

Then add the new user to the openrem group (again, replace the user name):

$ sudo adduser newusername openrem

Now add a “sym-link” to the new users home directory (again, replace the user name):

$ sudo ln -sT /var/dose/orthanc/physics /home/newusername/physicsimages

The new user should now be able to get to the physics folder by clicking on the physicsimages link when they log in,
and should be able to browse, copy and delete the zip files and folders.

Asciinema demo of this install

Link to asciinema [https://asciinema.org/a/8CqCcLMlUG5DlWj7NhrQV8b8L] demo of this install

Upgrading a native Linux install

These instructions assume a configuration similar to the “One page complete Ubuntu install” provided with release
0.8.1 and later. If you are running an older distribution, consider upgrading the operating system or migrating
the service to a new host. The test system for these upgrade instructions was upgraded from 18.04 to 20.04 and then
22.04 before the OpenREM upgrade was started. If you are using a different distribution or have set up your system
differently, it might be better to start afresh following or adapting the Upgrading to a new Linux server docs instead.

If upgrading to a new host, follow the Upgrading to a new Linux server docs.

This release will run on Python 3.8 or 3.9, but Python 3.10 is recommended. If a different release of Python is being
used, substitute 3.10 for that version where necessary below.

If you are upgrading OpenREM on a Linux server with limited internet access, go to the Offline installation or upgrade docs.

	Upgrades from 0.9.1 or earlier should review Upgrade to OpenREM 0.10.0 from 0.7.3 or later first. Upgrading to 1.0 is only
possible from 0.10.0.

Preparation

Back up the database - you will need the password for openremuser that will be in your
local_settings.py file. You’ll need this file again later so open it in a different window:

$ less /var/dose/veopenrem/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

Backup the database, in the main window:

$ pg_dump -U openremuser -d openremdb -F c -f pre-1-0-upgrade-dump.bak

Stop any Celery workers, Flower, RabbitMQ, Gunicorn, NGINX, and Orthanc (OpenREM service names will be
reversed if they weren’t changed with the 0.9.1 upgrade):

$ sudo systemctl stop openrem-celery
$ sudo systemctl stop openrem-flower
$ sudo systemctl stop openrem-gunicorn
$ sudo systemctl stop rabbitmq-server
$ sudo systemctl stop nginx
$ sudo systemctl stop orthanc

Update apt and install any updates:

$ sudo -- sh -c 'apt update && apt upgrade'

Install Python 3.10 and other packages:

$ sudo apt install acl python3.10 python3.10-dev python3.10-distutils python3.10-venv python3-pip \
postgresql nginx orthanc dcmtk default-jre zip gettext

Reset the permissions for the /var/dose folder:

$ sudo chmod -R 775 /var/dose
$ sudo chown -R $USER:openrem /var/dose
$ sudo chmod -R g+s /var/dose/*

Now find the uid of your user and the gid of the openrem group:

$ id
$ getent group openrem

Take note of the uid number and the gid in the third field of the group information and use it in the next
command, replacing 1001 (user uid) and 1002 (openrem group gid) as appropriate:

$ sudo setfacl -PRdm u:1001:rwx,g:1002:rwx,o::r /var/dose/

What are we doing with the permissions?

These settings enable the web server user www-data, the DICOM server user orthanc and the OpenREM server
users (you and your colleagues) to all read, write and execute the OpenREM files. The setfacl command
relies on Access Control Lists being available on your system - they are usually enabled on ext4 and can be
enabled on others. See New users, and quick access to physics folder for adding colleagues access to the Linux folders.

Create a new Python virtual environment:

$ python3.10 -m venv /var/dose/veopenrem3

Activate the virtualenv:

$. /var/dose/veopenrem3/bin/activate

Install the new version of OpenREM

Ensure the new virtualenv is active — prompt will look like

(veopenrem3)username@hostname:~$

Upgrade Pip and install OpenREM

$ pip install --upgrade pip

$ pip install openrem==1.0.0b1

Configure the local_settings.py file

Navigate to the Python openrem folder and copy the example local_settings.py and wsgi.py files to remove the
.linux and .example suffixes:

$ cd /var/dose/veopenrem3/lib/python3.10/site-packages/openrem/
$ cp openremproject/local_settings.py{.linux,}
$ cp openremproject/wsgi.py{.example,}

Review the old local_settings.py file that was opened earlier - see the first part of the Preparation section. Edit
the new local_settings.py as needed - make sure you update the database NAME, USER and PASSWORD, the
ALLOWED_HOSTS list and the EMAIL configuration and check all the other settings. Change the SECRET_KEY from
the default:

$ nano openremproject/local_settings.py

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql',
 'NAME': 'openremdb',
 'USER': 'openremuser',
 'PASSWORD': 'mysecretpassword', # This is the password you set earlier
 'HOST': '',
 'PORT': '',
 }
}

MEDIA_ROOT = '/var/dose/media/'

STATIC_ROOT = '/var/dose/static/'

Change secret key
SECRET_KEY = 'hmj#)-$smzqk*=wuz9^a46rex30^$_j$rghp+1#y&i+pys5b@$'

DEBUG mode: leave the hash in place for now, but remove it and the space (so DEBUG
is at the start of the line) as soon as something doesn't work. Put it back
when you get it working again.
DEBUG = True

ALLOWED_HOSTS = [
 # Add the names and IP address of your host, for example:
 'openrem-server',
 'openrem-server.ad.abc.nhs.uk',
 '10.123.213.22',
]

LOG_ROOT = '/var/dose/log'
LOG_FILENAME = os.path.join(LOG_ROOT, 'openrem.log')
QR_FILENAME = os.path.join(LOG_ROOT, 'openrem_qr.log')
EXTRACTOR_FILENAME = os.path.join(LOG_ROOT, 'openrem_extractor.log')

Removed comment hashes to enable log file rotation:
LOGGING['handlers']['file']['class'] = 'logging.handlers.RotatingFileHandler'
LOGGING['handlers']['file']['maxBytes'] = 10 * 1024 * 1024 # 10*1024*1024 = 10 MB
LOGGING['handlers']['file']['backupCount'] = 5 # number of log files to keep before deleting the oldest one
LOGGING['handlers']['qr_file']['class'] = 'logging.handlers.RotatingFileHandler'
LOGGING['handlers']['qr_file']['maxBytes'] = 10 * 1024 * 1024 # 10*1024*1024 = 10 MB
LOGGING['handlers']['qr_file']['backupCount'] = 5 # number of log files to keep before deleting the oldest one
LOGGING['handlers']['extractor_file']['class'] = 'logging.handlers.RotatingFileHandler'
LOGGING['handlers']['extractor_file']['maxBytes'] = 10 * 1024 * 1024 # 10*1024*1024 = 10 MB
LOGGING['handlers']['extractor_file']['backupCount'] = 5 # number of log files to keep before deleting the oldest one

Regionalisation settings
Date format for exporting data to Excel xlsx files.
Default in OpenREM is dd/mm/yyyy. Override it by uncommenting and customising below; a full list of codes is
available at https://msdn.microsoft.com/en-us/library/ee634398.aspx.
XLSX_DATE = 'mm/dd/yyyy'
Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
although not all choices may be available on all operating systems.
In a Windows environment this must be set to your system time zone.
TIME_ZONE = 'Europe/London'
Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = 'en-us'

DCMTK_PATH = '/usr/bin'
DCMCONV = os.path.join(DCMTK_PATH, 'dcmconv')
DCMMKDIR = os.path.join(DCMTK_PATH, 'dcmmkdir')
JAVA_EXE = '/usr/bin/java'
JAVA_OPTIONS = '-Xms256m -Xmx512m -Xss1m -cp'
PIXELMED_JAR = '/var/dose/pixelmed/pixelmed.jar'
PIXELMED_JAR_OPTIONS = '-Djava.awt.headless=true com.pixelmed.doseocr.OCR -'

E-mail server settings - see https://docs.djangoproject.com/en/2.2/topics/email/
EMAIL_HOST = 'localhost'
EMAIL_PORT = 25
EMAIL_HOST_USER = ''
EMAIL_HOST_PASSWORD = ''
EMAIL_USE_TLS = 0 # Use 0 for False, 1 for True
EMAIL_USE_SSL = 0 # Use 0 for False, 1 for True
EMAIL_DOSE_ALERT_SENDER = 'your.alert@email.address'
EMAIL_OPENREM_URL = 'http://your.openrem.server'

Migrate the database

In a shell/command window, move into the openrem folder:

$ cd /var/dose/veopenrem3/lib/python3.10/site-packages/openrem/

Prepare the migrations folder:

	Rename 0001_initial.py.1-0-upgrade to 0001_initial.py

$ mv remapp/migrations/0001_initial.py{.1-0-upgrade,}

Migrate the database:

$ python manage.py migrate --fake-initial

$ python manage.py migrate remapp --fake

$ python manage.py makemigrations remapp

Rename questions

There will be some questions about fields being renamed - answer N to all of them.

$ python manage.py migrate

$ python manage.py loaddata openskin_safelist.json

Update static files and translations

$ python manage.py collectstatic --clear

Warning about deleting all files

You will get a warning about all files in the static files location being deleted. As long as the folder is correct,
type yes to continue.

Virtual directory users

If you are running your website in a virtual directory, you also have to update the reverse.js file.
To get the file in the correct path, take care that you insert just after the declaration of
STATIC_ROOT the following line in your local_settings.py (see also the sample local_settings.py.example):

JS_REVERSE_OUTPUT_PATH = os.path.join(STATIC_ROOT, 'js', 'django_reverse')

To update the reverse.js file execute the following command:

$ python manage.py collectstatic_js_reverse

See Running the OpenREM website in a virtual directory for more details.

Generate translation binary files

$ python manage.py compilemessages

Update all the services configurations

Edit the Gunicorn systemd file WorkingDirectory and ExecStart:

$ sudo nano /etc/systemd/system/openrem-gunicorn.service

WorkingDirectory=/var/dose/veopenrem3/lib/python3.10/site-packages/openrem

ExecStart=/var/dose/veopenrem3/bin/gunicorn \
 --bind unix:/tmp/openrem-server.socket \
 openremproject.wsgi:application --timeout 300 --workers 4

Celery, Flower and RabbitMQ are no longer required for this release, so their Systemd control files
can be disabled, and RabbitMQ can be removed (assuming it is not in use for any other services on this
server):

$ sudo systemctl disable openrem-celery.service
$ sudo systemctl disable openrem-flower.service

$ sudo apt remove rabbitmq-server
$ sudo apt purge rabbitmq-server

Reload systemd and restart the services

$ sudo systemctl daemon-reload

Start and check Gunicorn:

$ sudo systemctl start openrem-gunicorn.service
$ sudo systemctl status openrem-gunicorn.service

Start and check NGINX:

$ sudo systemctl start nginx.service
$ sudo systemctl status nginx.service

Start and check Orthanc:

$ sudo systemctl start orthanc.service
$ sudo systemctl status orthanc.service

Registered Users error

If Orthanc fails to start, check the Orthanc log file:

$ sudo less /var/log/orthanc/Orthanc.log

If there is an error: Bad file format: The configuration section "RegisteredUsers" is defined in
2 different configuration files this might be due to changes in the installed version of Orthanc.

Edit the main Orthanc configuration file to remove the setting, as it is now in a credentials.json
configuration file.

$ sudo nano /etc/orthanc/orthanc.json

Remove the RegisteredUsers setting and try again:

$ sudo systemctl start orthanc.service
$ sudo systemctl status orthanc.service

If there is still an issue, check the log again. If the problem this time is due to the TCP port of the DICOM
server, you might need to give it permission again:

$ sudo setcap CAP_NET_BIND_SERVICE=+eip /usr/sbin/Orthanc

And restart Orthanc once more.

Test the webserver

You should now be able to browse to the web interface of your upgraded OpenREM system and have a look around.

Update the DICOM Store settings

Log in to the web interface, and navigate to Config, DICOM networking.

The remote nodes should be correct from the old system, but the DICOM Store SCP settings will need
updating. Modify the store, and add the hostname localhost.

After you have clicked Submit, the status page should show the server is alive. If it isn’t, go and check the
status of Orthanc again (we may have checked it too quickly before).

Upgrading to a new Linux server

If OpenREM has been running on an older Linux distribution, or you wish to move to Linux to host OpenREM and don’t want
to use Docker, these instructions will guide you through upgrading an existing database to a new server.

	Upgrades from 0.9.1 or earlier should review Upgrade to OpenREM 0.10.0 from 0.7.3 or later first. Upgrading to 1.0 is only
possible from 0.10.0.

This install is based on Ubuntu 22.04 using:

	Python 3.10 running in a virtualenv

	Database: PostgreSQL

	DICOM Store SCP: Orthanc running on port 104

	Webserver: NGINX with Gunicorn

	All OpenREM files in /var/dose/ with group owner of openrem

	Collects any Physics (QA) images and zips them

Get the local_settings.py file

Get local_settings.py file from the old server - it should be in one of these locations:

	Ubuntu “One page install”: /var/dose/veopenrem/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/openremproject/local_settings.py

	Other linux: /usr/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Linux virtualenv: vitualenvfolder/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Windows: C:\Python27\Lib\site-packages\openrem\openremproject\local_settings.py

	Windows virtualenv: virtualenvfolder\Lib\site-packages\openrem\openremproject\local_settings.py

Export the database

Export the old database on the old server - you will need the password for openremuser that will be in your
local_settings.py file, and you might need to change the openremuser database username and the openremdb
name of the database:

$ pg_dump -U openremuser -d openremdb -F c -f pre-1-0-upgrade-dump.bak

Transfer the files

Copy these two files to your new server.

Continue on the new server

Now follow the Native Linux install instructions looking out for the additional steps for upgrading to a new Linux
server.

Offline installation or upgrade

In order to install or upgrade OpenREM on a Windows server that does not have access to the internet you will need to
download all the packages and dependencies on another computer and copy them across.

If you have trouble when installing the Python packages on Windows due to incorrect architecture, you may need to either
download on a Windows system similar to the server (matching 32-bit/64-bit), or to download the files from
http://www.lfd.uci.edu/~gohlke/pythonlibs/ instead. Alternatively there are ways to tell pip to download binary
packages for specific platforms.

It is expected and highly recommended that server operating systems have access to security updates even
when other internet access is blocked.

The instructions that follow are for a Windows server that doesn’t have access to the internet. For Linux servers, it
is recommended to allow access to the distribution’s repositories to install and update the software. It is technically
possible to use a local repository mirror/cache, or to download all the packages manually, but this is beyond the
scope of these instructions.

An Instalación de Docker sin conexión might be easier on an offline Linux server, once Docker and Docker Compose are
installed.

On a computer with internet access

Download independent binaries

Download all the software in the Installing packages section except IIS:

	Python

	Orthanc

	PostgreSQL

	gettext

	Pixelmed

	dcmtk

	7Zip

	Notepad++

	WinSW

Download Python packages from PyPI

In a console, navigate to a suitable place and create an empty directory to collect all the packages in, then use
pip to download them all - Python 3 (including Pip) will need to be installed on the computer with internet access
to download the packages, ideally Python 3.10:

C:\Users\me\Desktop> mkdir openremfiles
C:\Users\me\Desktop> pip3 download -d openremfiles pip
C:\Users\me\Desktop> pip3 download -d openremfiles openrem==1.0.0b2
C:\Users\me\Desktop> pip3 download -d openremfiles wfastcgi

Copy everything to the Server

	Copy this directory plus the binaries to the offline server.

On the server without internet access

Follow the Native Windows install, Upgrading to a new Windows server, or Upgrading a native Windows install instructions, installing
the binary packages that were copied across as well as IIS. The Install OpenREM section has instructions on how to
install OpenREM python packages from the folder you have copied across.

Upgrade to OpenREM 0.10.0 from 0.7.3 or later

Upgrades to OpenREM 1.0 can only be made from version 0.10.0. Installations earlier than that need to be updated
to version 0.10.0 before updating to version 1.0.

These instructions can be used to upgrade any database from version 0.7.3 or later. 0.7.3 was released in August 2016.
For upgrades from versions earlier than that, please review the upgrade instructions for that version in the
0.10.0-docs [https://docs.openrem.org/en/0.10.0-docs/release-0.7.3.html].

Upgrade preparation

Python 2.7.9 or later must be installed, but it must still be Python 2.7 and not any of the Python 3 releases.

To check the Python version, activate the virtualenv if you are using one, then:

$ python -V

If the version is earlier than 2.7.9, then an upgrade is needed. If the version is 3.x, then Python 2.7 must
be installed.

Ubuntu Linux

	Check which version of Ubuntu is installed (lsb_release -a)

	If it is 14.04 LTS (Trusty), then an operating system upgrade or migration to a new server is required. If migrating,
ensure the version of OpenREM installed on the new server is the same as the one on the old server, then
Database restore following the instructions and when up and running again perform the upgrade on the new
server

	16.04 LTS (Xenial) or later should have 2.7.11 or later available.

	For other Linux distributions check in their archives for which versions are available.

Windows

	A newer version of Python 2.7 can be downloaded from python.org [https://www.python.org/downloads] and installed
over the current version.

Linux and Windows

	With a version of Python 2.7.9 or later, setuptools can be updated (activate virtualenv if using one):

$ pip install setuptools -U

Upgrade

	Back up your database

	For PostgreSQL on linux you can refer to Database backup

	For PostgreSQL on Windows you can refer to Windows installations

	For a non-production SQLite3 database, simply make a copy of the database file

	Stop any Celery workers

	Consider temporarily disabling your DICOM Store SCP, or redirecting the data to be processed later

	If you are using a virtualenv, activate it

	Install specific versions of some packages that are needed:

$ pip install django-crispy-forms==1.8.1
$ pip install django-solo==1.1.5
$ pip install flower==0.9.5

	Install specific version of Celery:

Linux server:

$ pip install celery==4.2.2

Windows server:

D:\>pip install celery==3.1.25

	Install the new version of OpenREM:

$ pip install openrem==0.10.0

Update the configuration

Locate and edit your local_settings file

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/openremproject/local_settings.py

	Other linux: /usr/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Linux virtualenv: vitualenvfolder/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Windows: C:\Python27\Lib\site-packages\openrem\openremproject\local_settings.py

	Windows virtualenv: virtualenvfolder\Lib\site-packages\openrem\openremproject\local_settings.py

Add additional log file configuration - changed with 0.8

Add the new extractor log file configuration to the local_settings.py - you can copy the “Logging
configuration” section here if you haven’t made any changes. The addition that needs to be inserted are the
lines relating to the extractor log file. This is only for upgrading the database - the local_settings.py
file will be updated again for the upgrade to 1.0:

Logging configuration
Set the log file location. The example places the log file in the media directory. Change as required - on linux
systems you might put these in a subdirectory of /var/log/. If you want all the logs in one file, set the filename
to be the same for each one.
import os
LOG_ROOT = MEDIA_ROOT
logfilename = os.path.join(LOG_ROOT, "openrem.log")
qrfilename = os.path.join(LOG_ROOT, "openrem_qr.log")
storefilename = os.path.join(LOG_ROOT, "openrem_store.log")
extractorfilename = os.path.join(LOG_ROOT, "openrem_extractor.log")

LOGGING['handlers']['file']['filename'] = logfilename # General logs
LOGGING['handlers']['qr_file']['filename'] = qrfilename # Query Retrieve SCU logs
LOGGING['handlers']['store_file']['filename'] = storefilename # Store SCP logs
LOGGING['handlers']['extractor_file']['filename'] = extractorfilename # Extractor logs

Set log message format. Options are 'verbose' or 'simple'. Recommend leaving as 'verbose'.
LOGGING['handlers']['file']['formatter'] = 'verbose' # General logs
LOGGING['handlers']['qr_file']['formatter'] = 'verbose' # Query Retrieve SCU logs
LOGGING['handlers']['store_file']['formatter'] = 'verbose' # Store SCP logs
LOGGING['handlers']['extractor_file']['formatter'] = 'verbose' # Extractor logs

Set the log level. Options are 'DEBUG', 'INFO', 'WARNING', 'ERROR', and 'CRITICAL', with progressively less logging.
LOGGING['loggers']['remapp']['level'] = 'INFO' # General logs
LOGGING['loggers']['remapp.netdicom.qrscu']['level'] = 'INFO' # Query Retrieve SCU logs
LOGGING['loggers']['remapp.netdicom.storescp']['level'] = 'INFO' # Store SCP logs
LOGGING['loggers']['remapp.extractors.ct_toshiba']['level'] = 'INFO' # Toshiba RDSR creation extractor logs

Migrate the database

In a shell/command window, move into the openrem folder:

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/

	Other linux: /usr/lib/python2.7/site-packages/openrem/

	Linux virtualenv: vitualenvfolder/lib/python2.7/site-packages/openrem/

	Windows: C:\Python27\Lib\site-packages\openrem\

	Windows virtualenv: virtualenvfolder\Lib\site-packages\openrem\

python manage.py makemigrations remapp
python manage.py migrate remapp

Systemd service names in Ubuntu installs

Systemd service files were renamed in the the 0.9.1 docs to use openrem-function rather than function-openrem. To
update the service files accordingly, follow the following steps. This is optional, but will make finding them
easier (e.g. sudo systemctl status openrem-[tab][tab] will list them) and these names are assumed for the
Upgrade to Docker and Upgrading a native Linux install docs. However, only the gunicorn service remains after the upgrade to
1.0, so you may find it easier just to remember the only service names, or just rename that one.

sudo systemctl stop gunicorn-openrem.service
sudo systemctl stop celery-openrem.service
sudo systemctl stop flower-openrem.service

sudo systemctl disable gunicorn-openrem.service
sudo systemctl disable celery-openrem.service
sudo systemctl disable flower-openrem.service

sudo mv /etc/systemd/system/{gunicorn-openrem,openrem-gunicorn}.service
sudo mv /etc/systemd/system/{celery-openrem,openrem-celery}.service
sudo mv /etc/systemd/system/{flower-openrem,openrem-flower}.service

sudo systemctl enable openrem-gunicorn.service
sudo systemctl enable openrem-celery.service
sudo systemctl enable openrem-flower.service

sudo systemctl start openrem-gunicorn.service
sudo systemctl start openrem-celery.service
sudo systemctl start openrem-flower.service

Upgrade to 1.0

Now return to Instalación instructions to follow the instructions to 1.0 for your preferred server solution.

After upgrading to version 1.0, there will be automatic tasks that are created to populate the summary fields introduced
in version 0.10.

[image: 0.10 upgrade panel before log in]

Log in as an administrator to start the migration process. If you have
a large number of studies in your database this can take some time. A large database (several hundred studies) on slow
disks might take a day or two, on faster disks or with a smaller database it could take from a few minutes to an hour
or so. You will be able to monitor the progress on the home page as seen in the figure at the bottom of this page.

[image: 0.10 upgrade panel after log in as administrator]

One task per modality type (CT, fluoroscopy, mammography and radiography) is generated to create a task per study in
each modality to populate the new fields for that study. If the number of workers is the same or less than the number
of modality types in your database then the study level tasks will all be created before any of them are executed as
all the workers will be busy. Therefore there might be a delay before the progress indicators on the OpenREM front
page start to update. You can review the number of tasks being created on the Config -> Tasks page.

Before the migration is complete, some of the information on the modality pages of OpenREM will be missing, such as the
dose information for example, but otherwise everything that doesn’t rely on Celery workers will work as normal. Studies
sent directly to be imported will carry on during the migration, but query-retrieve tasks will get stuck behind the
migration tasks.

[image: 0.10 upgrade panel, population of fields in progress]

When the process is complete the “Summary data fields migration” panel will disappear and will not be seen again.

Native Windows install

Document not ready for translation

This install is based on Windows Server 2022 using:

	Python 3.10 running in a virtualenv

	Database: PostgreSQL

	DICOM Store SCP: Orthanc running on port 104

	Webserver: Microsoft IIS running on port 80

	WinSW to run background tasks as services

	Notepad++ for editing files

	Database files stored on D:

	OpenREM files stored on E:

	With Physics (QA) images being collected and zipped for retrieval

The instructions should work for Windows Server 2016 and 2019; and will probably work with Windows 10/11 with some
modification. Desktop editions of Windows are not recommended for a production OpenREM install.

If you are upgrading an existing installation to a new Windows server, go to the Upgrading to a new Windows server
first.

If you are upgrading an existing Windows Server installation in-place, go to Upgrading a native Windows install instead.

If you are installing on a server with no internet access, go to Offline installation or upgrade to download the packages.

These instructions assume the following disk layout - there is more information about the reasoning in the box below:

	C: OS disk

	D: Database disk

	E: Data disk

Initial prep

Creating folders

Why D: and E: drives?

OpenREM data are stored on drive E: to keep the data away from the operating system drive so that it is easier
for building/recreating the server and knowing what needs to be backed up.

For the same reason, we will install PostgreSQL so that the database data are store on drive D: - this makes it possible
to provide a different configuration of disk for the database drive, with different backup policies.

However, it is also possible to store all the data on the C: drive if that works better for your installation. In
this case, it would be advisable to create a folder C:\OpenREM\ and create all the folders specified below into that
folder.

You can also use different drive letters if that works better for your installation. In both cases paths will need
to be modified in the instructions to suite.

[image: Windows install folder layout]

Figure 1: Windows install folder layout

Create the following folders. The instructions here are for a CMD window but they can be created in Windows Explorer
instead:

C:\Users\openrem>D:
D:\>mkdir database
D:\>E:
E:\>mkdir log media pixelmed dcmtk 7-zip static task_queue venv orthanc\dicom orthanc\physics orthanc\storage winsw

Set permissions

	Right click on the E:\log folder and click Properties

	In the Security tab click Edit... and Add...

If the server is connected to a domain

If the server is connected to a domain, the From this location: will have the name of the domain. Click
Locations... and choose the name of the server instead of the domain name.

[image: Set account location]

Figure 2: Set account location

	Enter the object name IIS_IUSRS and click OK

	Tick the Modify Allow to enable read and write permissions

	Click OK twice to close the dialogues

	Repeat for the E:\media and E:\task_queue folders

Installing packages

Python

Download the latest version for Windows from https://www.python.org/downloads/ as long as it is in the 3.10 series.
OpenREM v1.0 has not been tested with Python 3.11 yet.

Open the downloaded file to start the installation:

	Customize installation

	Leave all the Optional Features ticked, and click Next

	Tick Install for all users - this will automatically tick Precompile standard library

	Install

	Click to Disable path length limit - might not be necessary but might be useful!

	Close

Orthanc

Download the 64 bit version from https://www.orthanc-server.com/download-windows.php.

The download file might be blocked because it isn’t a commonly downloaded executable. Click the ... menu
and select Keep. Then click Show more and Keep anyway.

Open the downloaded file to start the installation:

	Click Next >, accept the agreement and Next > again.

	Default install location, Next >

	Select Orthanc storage directory - Browse... to E:\orthanc\storage, OK and Next >

	Click Next > for a Full installation

	Start Menu Folder Next >

	Ready to Install Install

	Finish

PostgreSQL

Download the latest version of PostgreSQL from https://www.enterprisedb.com/downloads/postgres-postgresql-downloads -
choose the Windows x86-64 version. OpenREM v1.0 has been tested with PostgreSQL v14.5.

Open the downloaded file to start the installation:

	Some Microsoft redistributables will install

	Click Next > to start

	Default Installation Directory Next >

	All components Next >

	Data Directory - browse to D:\database then Select folder and Next >

	Create a password for the postgres superuser - you will need this to setup the database with pgAdmin 4 later

	Enter it twice and Next >

	Default port Next >

	Default Locale Next >

	Pre Installation Summary Next >

	Ready to Install Next > and the installation will begin

	Untick Launch Stack Builder at exit

	Finish

gettext

Download the 64 bit static version of gettext 0.21 from https://mlocati.github.io/articles/gettext-iconv-windows.html.
Use the .exe version (software install icon, not the zip icon)

[image: gettext download page]

Figure 3: gettext download page

Open the downloaded file to start the installation:

	Accept the agreement Next >

	Default installation directory Next >

	Additional Tasks leave both boxes ticked Next >

	Ready to Install Install

	Finish

What is gettext for?

The gettext binary enables the translations to be available to users of the web interface. It is not
essential if you don’t want the translations to be available.

Pixelmed

Download DoseUtility from from the page
http://www.dclunie.com/pixelmed/software/webstart/DoseUtilityUsage.html - find How to install it (locally) near the
bottom of the page and click the Windows executable that does not require Java to be installed link.

[image: Pixelmed download page]

Figure 4: Pixelmed download page

	Open the downloaded zip file and open a new file browser at E:\pixelmed

	Drag the contents of the zip file to the pixelmed folder

DCMTK

Download from https://dcmtk.org/dcmtk.php.en - look for the DCMTK executable binaries section, and download the
64 bit DLL build for Windows.

[image: DCMTK download page]

Figure 5: DCMTK download page

	Open the downloaded zip file and open a new file browser at E:\dcmtk

	Drag the contents of the dcmtk-3.x.x-win64-dynamic folder in the zip file to the dcmtk folder

	You should end up with E:\dcmtk\bin\ etc

7Zip

Download the 64-bit x64 exe file from https://www.7-zip.org/

	Type, or click on the ... to browse to E:\7-zip\

	Install

	Close

WinSW

Download the 64-bit x64 exe file from https://github.com/winsw/winsw/releases/tag/v2.12.0

	Open a new file browser at E:\winsw

	Drag the exe file to the winsw folder

	Rename the exe file from WinSW-x64 to WinSW

Notepad++

Download the latest version of Notepad++ from https://notepad-plus-plus.org/downloads/

Open the downloaded file to start the installation:

	Select a language OK

	Welcome Next >

	License Agreement I Agree

	Install Location Next >

	Choose Components Next >

	Install

	Finish (you can untick the Run Notepad++ option, we don’t need it yet)

IIS

	Open the Control Panel

	Search for windows features

	Select Turn Windows features on or off

	Start the wizard Next >

	Role-based or feature-based installation Next >

	Leave the current server highlighted Next >

	Check the Web Server (IIS) box

	In the pop-up dialogue for adding IIS Management Console, click Add Features

	Next >

	Features, Next >

	Web Server Role (IIS) Next >

	Expand the Application Development section

	Check the CGI box, Next >

	Install

	Close

You can check the server is running by browsing to http://localhost/ on the server. You should see the
default IIS Welcome page. It might not work immediately, check again in a few minutes.

Installing Python packages

Create and activate the virtualenv

Open a CMD window:

C:\Users\openrem>e:
E:\>py -m venv venv
E:\>venv\Scripts\activate
(venv) E:\>

Install OpenREM

Installing on a server with no internet access

Make sure the virtualenv is activated (command line will have the name of the virtualenv as a prefix:
(venv) E:\), then navigate to where the openremfiles directory is that you copied from the computer with
internet access, eg if it is in your desktop folder:

(venv) E:\>c:
(venv) C:\>cd Users\openrem\Desktop

Now upgrade pip and install OpenREM and its dependencies:

(venv) C:\Users\openrem\Desktop>pip install --no-index --find-links=openremfiles --upgrade pip
(venv) C:\Users\openrem\Desktop>pip install --no-index --find-links=openremfiles openrem

(venv) E:\>pip install --upgrade pip
(venv) E:\>pip install openrem==1.0.0b2
(venv) E:\>pip install wfastcgi

OpenREM configuration and database creation

PostgreSQL database creation

Start pgAdmin 4 - you will need the password you set when installing PostgreSQL

Create user

	Click on Servers to expand, enter the password again

	Right click Login/Group Roles, Create, Login/Group Role...

	Name: openremuser

	Definition, Password: add a password for the openremuser

	Privileges: activate Can login? and Create database?

	Save

Create database

	Right click Databases, Create, Database...

	Database: openremdb

	Owner: openremuser

	Save

Configure OpenREM

Open the E:\venv\Lib\site-packages\openrem\openremproject folder and rename the example local_settings.py and
wsgi.py files to remove the .windows and .example suffixes. Removing the file name extension will produce a
warning to check if you are sure - Yes:

[image: openremproject folder]

Figure 6: openremproject folder

Edit local_settings.py as needed (right click Edit with Notepad++) Make sure you change the PASSWORD, the
SECRET_KEY (to anything, just change it), the ALLOWED_HOSTS list, regionalisation settings and the EMAIL
configuration. You can modify the email settings later if necessary. Some settings are not shown here but are documented
in the settings file or elsewhere in the docs. For details on the final variable see Systems where Device Observer UID is not static.

Upgrading to a new server

If you are upgrading to a new Linux server, review the local_settings.py file from the old server to copy over
the ALLOWED_HOSTS list and the EMAIL configuration, and check all the other settings. Change the
SECRET_KEY from the default, but it doesn’t have to match the one on the old server. The database NAME,
USER and PASSWORD will be the ones you created on the new server. For details on the final variable see
Systems where Device Observer UID is not static.

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql', # Add 'postgresql', 'mysql', 'sqlite3' or 'oracle'.
 'NAME': 'openremdb', # Or path to database file if using sqlite3.
 'USER': 'openremuser', # Not used with sqlite3.
 'PASSWORD': '', # Not used with sqlite3.
 'HOST': '', # Set to empty string for localhost. Not used with sqlite3.
 'PORT': '', # Set to empty string for default. Not used with sqlite3.
 }
}

TASK_QUEUE_ROOT = 'E:/task_queue/'

MEDIA_ROOT = 'E:/media/'

STATIC_ROOT = 'E:/static/'
JS_REVERSE_OUTPUT_PATH = os.path.join(STATIC_ROOT, 'js', 'django_reverse')

Change secret key
SECRET_KEY = 'hmj#)-$smzqk*=wuz9^a46rex30^$_j$rghp+1#y&i+pys5b@$'

DEBUG mode: leave the hash in place for now, but remove it and the space (so DEBUG
is at the start of the line) as soon as something doesn't work. Put it back
when you get it working again.
DEBUG = True

ALLOWED_HOSTS = [
 # Add the names and IP address of your host, for example:
 'openrem-server',
 'openrem-server.ad.abc.nhs.uk',
 '10.123.213.22',
]

LOG_ROOT = 'E:/log/'
LOG_FILENAME = os.path.join(LOG_ROOT, 'openrem.log')
QR_FILENAME = os.path.join(LOG_ROOT, 'openrem_qr.log')
EXTRACTOR_FILENAME = os.path.join(LOG_ROOT, 'openrem_extractor.log')

Regionalisation settings
Date format for exporting data to Excel xlsx files.
Default in OpenREM is dd/mm/yyyy. Override it by uncommenting and customising below; a full list of codes is
available at https://msdn.microsoft.com/en-us/library/ee634398.aspx.
XLSX_DATE = 'mm/dd/yyyy'
Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
although not all choices may be available on all operating systems.
In a Windows environment this must be set to your system time zone.
TIME_ZONE = 'Europe/London'
Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = 'en-us'

DCMTK_PATH = 'E:/dcmtk/bin'
DCMCONV = os.path.join(DCMTK_PATH, 'dcmconv.exe')
DCMMKDIR = os.path.join(DCMTK_PATH, 'dcmmkdir.exe')
JAVA_EXE = 'E:/pixelmed/windows/jre/bin/java.exe'
JAVA_OPTIONS = '-Xms256m -Xmx512m -Xss1m -cp'
PIXELMED_JAR = 'E:/pixelmed/pixelmed.jar'
PIXELMED_JAR_OPTIONS = '-Djava.awt.headless=true com.pixelmed.doseocr.OCR -'

E-mail server settings - see https://docs.djangoproject.com/en/2.2/topics/email/
EMAIL_HOST = 'localhost'
EMAIL_PORT = 25
EMAIL_HOST_USER = ''
EMAIL_HOST_PASSWORD = ''
EMAIL_USE_TLS = 0 # Use 0 for False, 1 for True
EMAIL_USE_SSL = 0 # Use 0 for False, 1 for True
EMAIL_DOSE_ALERT_SENDER = 'your.alert@email.address'
EMAIL_OPENREM_URL = 'http://your.openrem.server'

IGNORE_DEVICE_OBSERVER_UID_FOR_THESE_MODELS = ['GE OEC Fluorostar']

Populate OpenREM database and collate static files

In a CMD window, move to the openrem Python folder and activate the virtualenv:

C:\Users\openrem>e:
E:\>cd venv\Lib\site-packages\openrem
E:\venv\Lib\site-packages\openrem>e:\venv\Scripts\activate
(venv) E:\venv\Lib\site-packages\openrem>

Upgrading to a new server

If you are upgrading to a new Windows server, do these additional steps before continuing with those below:

	Rename E:\venv\Lib\site-packages\openrem\remapp\migrations\0001_initial.py.1-0-upgrade to 0001_initial.py

Import the database - update the path to the database backup file you copied from the old server. These steps
can take a long time depending on the size of the database and the resources of the server:

C:\Users\openrem>"c:\Program Files\PostgreSQL\14\bin\pg_restore.exe" --no-privileges --no-owner -U openremuser -d openremdb -W windump.bak

Migrate the database:

(venv) E:\venv\Lib\site-packages\openrem>python manage.py migrate --fake-initial

(venv) E:\venv\Lib\site-packages\openrem>python manage.py migrate remapp --fake

(venv) E:\venv\Lib\site-packages\openrem>python manage.py makemigrations remapp

Advertencia

Make sure you didn’t get a RuntimeWarning when running the last command - scroll back up to the command and
check you don’t see the following:

(venv) E:\venv\Lib\site-packages\openrem>python manage.py makemigrations remapp
E:\venv\lib\site-packages\django\core\management\commands\makemigrations.py:105: RuntimeWarning:

Got an error checking a consistent migration history performed for database connection 'default': unable to
open database file

If you do, check the database name and password settings in the local_settings.py file. You will need to delete
the file E:\venv\Lib\site-packages\openrem\remapp\migrations\0001_initial.py before trying again.

(venv) E:\venv\Lib\site-packages\openrem>python manage.py migrate
(venv) E:\venv\Lib\site-packages\openrem>python manage.py loaddata openskin_safelist.json
(venv) E:\venv\Lib\site-packages\openrem>python manage.py collectstatic --no-input --clear

Create the translation files, assuming gettext was installed:

(venv) E:\venv\Lib\site-packages\openrem>python manage.py compilemessages

If this is a new install, not an upgrade, create the superuser account:

(venv) E:\venv\Lib\site-packages\openrem>python manage.py createsuperuser

Webserver

Configure IIS

	Open Internet Information Services (IIS) Manager from the Start menu or the Administrative Tools.

	Click on the name of your server in the Connections pane on the left

	Double click on FastCGI Settings

	In the Actions pane on the right, click Add Application

	In the Full Path: box type or browse to E:\venv\Scripts\python.exe

	In the Arguments box type the path to wfastcgi.py: E:\venv\Lib\site-packages\wfastcgi.py

	Under FastCGI properties, click on (Collection) next to Environment Variables and click on the grey … box

	In the EnvironmentVariables Collection Editor click Add

	Change the value of Name to DJANGO_SETTINGS_MODULE (must be upper-case)

	Set the Value to openremproject.settings

	Click Add again and add the variable name PYTHONPATH with the value E:\venv\Lib\site-packages\openrem

	Click Add again and add the variable name WSGI_HANDLER with the value django.core.wsgi.get_wsgi_application()

	Click OK

[image: Environment Variables Collection]

Figure 7: Environment Variables Collection Editor

	Under FastCGI Properties -> Process Model click on the Activity Timeout value and change it to 1200

Activity Timeout on slow running systems

If you encounter issues with long-running requests failing on slow running systems, you might try increasing the
value of the Activity Timeout further.

[image: Add FastCGI Application settings]

Figure 8: Add FastCGI Application settings

	Click OK to close the dialogue box

Create a new website

	In the Connections pane expand the tree under server name

	Expand the Sites folder, right click on Default Website and click Remove

	Click Yes

	Right click on Sites and click Add Website…

	Enter Site name as OpenREM

	Under Content Directory Physical path enter or browse to E:\venv\Lib\site-packages\openrem

	Click OK

Configure the new website

	Click on the OpenREM site under Connections in the left pane

	Double click on Handler Mappings

	In the right pane, under Actions click Add Module Mapping…

	In the Request Path box enter an asterix (*)

	In the Module box select FastCgiModule (not the CgiModule)

	In the Executable box enter E:\venv\Scripts\python.exe|E:\venv\Lib\site-packages\wfastcgi.py

	In Name type OpenREM CGI handler (value of name is not important)

	Click Request Restrictions and untick the Invoke handler only if request is mapped to: checkbox

	Click OK twice to close the Request Restrictions dialog and the Add Module Mapping dialogue

	When prompted Do you want to create a FastCGI application for this executable? click No

Quick test!

You can now browse on the server to http://localhost/ and you should see an «ugly» version of the website. It will
look better after we have configured the static files, next!

Configure IIS to server the static files

	Right click on the OpenREM site under Connections in the left pane

	Click Add Virtual Directory

	Enter static as the Alias

	Enter or browse to E:\static as the Physical path

	Click OK

	Double click on Handler Mappings in the middle pane

	Click on View Ordered List... in the right pane

	Select StaticFile

	Click Move Up in the Action pane on the right until StaticFile is at the top

	There will be a warning about the list order being changed - click Yes to continue

Test the webserver

Browse to http://localhost/ on the server, or browse to the servername in a browser on another machine, and you should
be able to see the new OpenREM web service.

Task queue

Running OpenREM on Windows 10 or Windows 11?

For non-server environments, where task executors don’t need to be persistent across system restarts,
there is a shortcut for starting workers. You can start a single worker in a new console as follows:

C:\Users\openrem>E:
E:\>cd venv\Lib\site-packages\openrem
E:\venv\Lib\site-packages\openrem>e:\venv\Scripts\activate
(venv) E:\venv\Lib\site-packages\openrem>python manage.py run_huey

If you want more than one worker to run tasks in parallel,
you will need to repeat the previous steps for each additional worker in a new console.

You can stop a worker by pressing Ctrl + C in the appropriate console

If you cannot start a worker or you are getting error messages, please make sure that your current user
has read and write permissions in the E:\task_queue directory.

OpenREM uses a task queue to run its background tasks.
Therefore, we need additional Windows services that allow us to run these tasks separately from the web application.

To accomplish that we need to do the following:

Create local service account

First we need to create an account that will allow the IIS worker to control the task workers. Most importantly, to kill a task if necessary.

There is a difference if you are connected to an Active Directory or not. Whatever suits your setup, follow the guide
A if you are not in an Active Directory or B if you are.

Guide A

For a Windows instance which is not associated to an Active Directory, it suffices to create a local user account:

	Open the Search Tab

	Search for Add, edit, or remove other users

	In the menu, click Add someone else to this PC

	In the left pane right click on Users

	Click New User...

	Fill in all fields with the data of a new user account (see image)

	Untick User must change password at next login

	Click Create

	In the left pane click on Groups

	Right click on IIS_IUSRS

	Click Add to Group...

	Click on the Add button

	In the textfield, enter the username of the previously created account

	Click Ok twice

Guide B

For a Windows instance that is connected to an Active Directory, or even a controller of one, follow this guide:

	Open the Server Manager

	In the navigation bar, click on Tools

	Click Active Directory Users and Computers

	In the left pane, expand your domain

	Right click on Users

	Hove over New

	Click on User

	Fill in all required fields with the data of a new user account

	Click Next

	Enter the new user password twice and untick User must change password at next login

	Click Next and then Finish to create the service account

Creating worker services

Copy the file from

	E:\venv\Lib\site-packages\openrem\sample-config\queue-init.bat to

	E:\winsw\

Make sure that the previously downloaded and renamed WinSW.exe file is in the same folder (E:\winsw\).

	Double click the queue-init.bat file

	Enter your Domain name or leave empty if not applicable

	Enter the username of the previously created account

	Enter the associated password

	Enter the number of workers you would like to spawn, this number should no exceed the number of CPU cores available to your system

	Wait for the services to get registered and started up (Notice: many windows may appear and disappear quickly)

Adjusting IIS Application Pool Identity

	Open Internet Information Services (IIS) Manager from the Start menu or the Administrative Tools.

	In the Connections pane expand the tree under server name

	Click on Application Pools

	Right click on OpenREM in the middle pane

	Click Advanced Settings...

	Under Process Model click on Identity and then on the grey … box

	Select the Custom account: radio button

	Click on Set...

	Enter the credentials of the preivously created account. If you are in an Active Directory prefix ther usernmae with <YOUR-DOMAIN>\

	Click OK three times

DICOM Store SCP

Copy the Lua file to the Orthanc folder. This will control how we process the incoming DICOM objects.

Copy the file from

	E:\venv\Lib\site-packages\openrem\sample-config\openrem_orthanc_config_windows.lua to

	E:\orthanc\

Edit the Orthanc Lua configuration options - right click on the file you just copied Edit with Notepad++

Set use_physics_filtering to true if you want Orthanc to keep physics test studies, and have it put them in the
E:\orthanc\dicom\ folder. Set it to false to disable this feature. Add names or IDs to
physics_to_keep as a comma separated list.

-- Set this to true if you want Orthanc to keep physics test studies, and have it
-- put them in the physics_to_keep_folder. Set it to false to disable this feature
local use_physics_filtering = true

-- A list to check against patient name and ID to see if the images should be kept.
-- Orthanc will put anything that matches this in the physics_to_keep_folder.
local physics_to_keep = {'physics'}

Lists of things to ignore. Orthanc will ignore anything matching the content of these comma separated lists; they will
not be imported into OpenREM.

-- Lists of things to ignore. Orthanc will ignore anything matching the content of
-- these lists: they will not be imported into OpenREM.
local manufacturers_to_ignore = {'Faxitron X-Ray LLC', 'Gendex-KaVo'}
local model_names_to_ignore = {'CR 85', 'CR 75', 'CR 35', 'CR 25', 'ADC_5146', 'CR975'}
local station_names_to_ignore = {'CR85 Main', 'CR75 Main'}
local software_versions_to_ignore = {'VixWin Platinum v3.3'}
local device_serial_numbers_to_ignore = {'SCB1312016'}

Enable or disable additional functionality to extract dose information from older Toshiba and GE scanners, and specify
which CT scanners should use this method. Each system should be listed as {'Manufacturer', 'Model name'}, with
systems in a comma separated list within curly brackets, as per the example below:

-- Set this to true if you want to use the OpenREM Toshiba CT extractor. Set it to
-- false to disable this feature.
local use_toshiba_ct_extractor = true

-- A list of CT make and model pairs that are known to have worked with the Toshiba CT extractor.
-- You can add to this list, but you will need to verify that the dose data created matches what you expect.
local toshiba_extractor_systems = {
 {'Toshiba', 'Aquilion'},
 {'GE Medical Systems', 'Discovery STE'},
}

Save any changes.

Edit the Orthanc configuration. Navigate to C:\Program Files\Orthanc Server\Configuration and right click on
orthanc.json and click Edit with Notepad++:

Add the Lua script to the Orthanc config:

// List of paths to the custom Lua scripts that are to be loaded
// into this instance of Orthanc
"LuaScripts" : [
"E:\\orthanc\\openrem_orthanc_config_windows.lua"
],

Set the AE Title and port:

// The DICOM Application Entity Title
"DicomAet" : "OPENREM",

// The DICOM port
"DicomPort" : 104,

Nota

Optionally, you may also like to enable the HTTP server interface for Orthanc (although if the Lua script is removing
all the objects as soon as they are processed, you won’t see much!):

// Whether remote hosts can connect to the HTTP server
"RemoteAccessAllowed" : true,

// Whether or not the password protection is enabled
"AuthenticationEnabled" : false,

You will also need to open the firewall for port 8042.

To see the Orthanc web interface, go to http://openremserver:8042/ – of course change the server name to that of your
server!

Save any changes.

Allow DICOM traffic through the firewall

	Type windows firewall in the Start menu to open Windows Defender Firewall

	Click Advanced settings in the left hand pane to open Windows Defender Firewall with Advanced Security

	Click Inbound Rules in the left hand pane

	Click New Rule... in the right hand pane

	Click Port and Next >

	Leave as TCP and specify port 104 and click Next >

	Allow the connection, Next >

	Leave the boxes ticked for When does this rule apply if that is appropriate, Next >

	Name Orthanc DICOM port

	Finish

Finish off

Restart Orthanc:

	Launch Services from the start menu

	Find Orthanc on the list and click Restart

	Orthanc logs can be reviewed at C:\Program Files\Orthanc Server\Logs - the current log file will have the latest
date and time in the filename - right click Edit with Notepad++

You can check if the port is running and allowed through the firewall using the Network tab of Resource Monitor.

Upgrading a native Windows install

Release 1.0 of OpenREM uses a newer version of Python and no longer uses RabbitMQ, Erlang and Celery. Instructions
are only provided for Orthanc DICOM server, and no longer for Conquest. The built-in DICOM Store node has been removed.

Consider upgrading to a new Windows server instead of upgrading in place. Instructions for
Upgrading to a new Windows server are provided including exporting and importing the existing PostgreSQL database.

	something about a clean install, and/or not having old services that are no longer required

	something about being a standardised approach which will make upgrade docs and examples easier to follow

Upgrades from 0.9.1 or earlier should review Upgrade to OpenREM 0.10.0 from 0.7.3 or later first. Upgrading to 1.0 is only possible
from 0.10.0.

Then best effort upgrade docs… a lot of this can be copied from the Native Windows install instructions, or depending
on what it ends up looking like, we might point there with a few admonitions to point out differences?

	Export database for backup

	Stop all the services

	Install Python 3.10

	Update PostgreSQL, Orthanc, DCMTK, Pixelmed

	Add/update as necessary gettext, 7Zip, Notepad++

	Install IIS if Apache/NGINX previously in use

	Create virtualenv, activate

	Install new OpenREM, wfastcgi

	Configure OpenREM - use new local_settings.py.windows, adjust database name etc

	Will database be available in new version of PostgreSQL? Or does it need to be imported?

	Rename 0001_initial.py file

	Do the fake-initial etc stuff

	Do the rest of the manage.py stuff

	Configure/reconfigure IIS

	Configure/reconfigure Orthanc

Upgrading to a new Windows server

If OpenREM has been running on an older Windows server version, or you wish to move to Windows Server to host OpenREM,
these instructions will guide you through upgrading an existing database to a new server.

This install is based on Windows Server 2022 - for details see the main Native Windows install docs.

	Upgrades from 0.9.1 or earlier should review Upgrade to OpenREM 0.10.0 from 0.7.3 or later first. Upgrading to 1.0 is only
possible from 0.10.0.

Get the local_settings.py file

Get local_settings.py file from the old server - it should be in one of these locations:

	Ubuntu “One page install”: /var/dose/veopenrem/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/openremproject/local_settings.py

	Other linux: /usr/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Linux virtualenv: vitualenvfolder/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Windows: C:\Python27\Lib\site-packages\openrem\openremproject\local_settings.py

	Windows virtualenv: virtualenvfolder\Lib\site-packages\openrem\openremproject\local_settings.py

Export the database

Export the old database on the old server - get details from the local_settings.py file:

	Check the database username and change in the command below as necessary (openremuser)

	Check the database name and change in the command below as necessary (openremdb)

	You will need the password for openremuser

	You will need to edit the command for the path to pg_dump.exe - the 14 is likely to be a lower number

C:\Users\openrem>"c:\Program Files\PostgreSQL\14\bin\pg_dump.exe" -U openremuser -d openremdb -F c -f windump.bak

Transfer the files

Copy these two files to your new server.

Continue on the new server

Now follow the Native Windows install instructions looking out for the additional steps for upgrading to a new
server.

Offline installation or upgrade

In order to install or upgrade OpenREM on a Windows server that does not have access to the internet you will need to
download all the packages and dependencies on another computer and copy them across.

If you have trouble when installing the Python packages on Windows due to incorrect architecture, you may need to either
download on a Windows system similar to the server (matching 32-bit/64-bit), or to download the files from
http://www.lfd.uci.edu/~gohlke/pythonlibs/ instead. Alternatively there are ways to tell pip to download binary
packages for specific platforms.

It is expected and highly recommended that server operating systems have access to security updates even
when other internet access is blocked.

The instructions that follow are for a Windows server that doesn’t have access to the internet. For Linux servers, it
is recommended to allow access to the distribution’s repositories to install and update the software. It is technically
possible to use a local repository mirror/cache, or to download all the packages manually, but this is beyond the
scope of these instructions.

An Instalación de Docker sin conexión might be easier on an offline Linux server, once Docker and Docker Compose are
installed.

On a computer with internet access

Download independent binaries

Download all the software in the Installing packages section except IIS:

	Python

	Orthanc

	PostgreSQL

	gettext

	Pixelmed

	dcmtk

	7Zip

	Notepad++

	WinSW

Download Python packages from PyPI

In a console, navigate to a suitable place and create an empty directory to collect all the packages in, then use
pip to download them all - Python 3 (including Pip) will need to be installed on the computer with internet access
to download the packages, ideally Python 3.10:

C:\Users\me\Desktop> mkdir openremfiles
C:\Users\me\Desktop> pip3 download -d openremfiles pip
C:\Users\me\Desktop> pip3 download -d openremfiles openrem==1.0.0b2
C:\Users\me\Desktop> pip3 download -d openremfiles wfastcgi

Copy everything to the Server

	Copy this directory plus the binaries to the offline server.

On the server without internet access

Follow the Native Windows install, Upgrading to a new Windows server, or Upgrading a native Windows install instructions, installing
the binary packages that were copied across as well as IIS. The Install OpenREM section has instructions on how to
install OpenREM python packages from the folder you have copied across.

Upgrade to OpenREM 0.10.0 from 0.7.3 or later

Upgrades to OpenREM 1.0 can only be made from version 0.10.0. Installations earlier than that need to be updated
to version 0.10.0 before updating to version 1.0.

These instructions can be used to upgrade any database from version 0.7.3 or later. 0.7.3 was released in August 2016.
For upgrades from versions earlier than that, please review the upgrade instructions for that version in the
0.10.0-docs [https://docs.openrem.org/en/0.10.0-docs/release-0.7.3.html].

Upgrade preparation

Python 2.7.9 or later must be installed, but it must still be Python 2.7 and not any of the Python 3 releases.

To check the Python version, activate the virtualenv if you are using one, then:

$ python -V

If the version is earlier than 2.7.9, then an upgrade is needed. If the version is 3.x, then Python 2.7 must
be installed.

Ubuntu Linux

	Check which version of Ubuntu is installed (lsb_release -a)

	If it is 14.04 LTS (Trusty), then an operating system upgrade or migration to a new server is required. If migrating,
ensure the version of OpenREM installed on the new server is the same as the one on the old server, then
Database restore following the instructions and when up and running again perform the upgrade on the new
server

	16.04 LTS (Xenial) or later should have 2.7.11 or later available.

	For other Linux distributions check in their archives for which versions are available.

Windows

	A newer version of Python 2.7 can be downloaded from python.org [https://www.python.org/downloads] and installed
over the current version.

Linux and Windows

	With a version of Python 2.7.9 or later, setuptools can be updated (activate virtualenv if using one):

$ pip install setuptools -U

Upgrade

	Back up your database

	For PostgreSQL on linux you can refer to Database backup

	For PostgreSQL on Windows you can refer to Windows installations

	For a non-production SQLite3 database, simply make a copy of the database file

	Stop any Celery workers

	Consider temporarily disabling your DICOM Store SCP, or redirecting the data to be processed later

	If you are using a virtualenv, activate it

	Install specific versions of some packages that are needed:

$ pip install django-crispy-forms==1.8.1
$ pip install django-solo==1.1.5
$ pip install flower==0.9.5

	Install specific version of Celery:

Linux server:

$ pip install celery==4.2.2

Windows server:

D:\>pip install celery==3.1.25

	Install the new version of OpenREM:

$ pip install openrem==0.10.0

Update the configuration

Locate and edit your local_settings file

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/openremproject/local_settings.py

	Other linux: /usr/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Linux virtualenv: vitualenvfolder/lib/python2.7/site-packages/openrem/openremproject/local_settings.py

	Windows: C:\Python27\Lib\site-packages\openrem\openremproject\local_settings.py

	Windows virtualenv: virtualenvfolder\Lib\site-packages\openrem\openremproject\local_settings.py

Add additional log file configuration - changed with 0.8

Add the new extractor log file configuration to the local_settings.py - you can copy the “Logging
configuration” section here if you haven’t made any changes. The addition that needs to be inserted are the
lines relating to the extractor log file. This is only for upgrading the database - the local_settings.py
file will be updated again for the upgrade to 1.0:

Logging configuration
Set the log file location. The example places the log file in the media directory. Change as required - on linux
systems you might put these in a subdirectory of /var/log/. If you want all the logs in one file, set the filename
to be the same for each one.
import os
LOG_ROOT = MEDIA_ROOT
logfilename = os.path.join(LOG_ROOT, "openrem.log")
qrfilename = os.path.join(LOG_ROOT, "openrem_qr.log")
storefilename = os.path.join(LOG_ROOT, "openrem_store.log")
extractorfilename = os.path.join(LOG_ROOT, "openrem_extractor.log")

LOGGING['handlers']['file']['filename'] = logfilename # General logs
LOGGING['handlers']['qr_file']['filename'] = qrfilename # Query Retrieve SCU logs
LOGGING['handlers']['store_file']['filename'] = storefilename # Store SCP logs
LOGGING['handlers']['extractor_file']['filename'] = extractorfilename # Extractor logs

Set log message format. Options are 'verbose' or 'simple'. Recommend leaving as 'verbose'.
LOGGING['handlers']['file']['formatter'] = 'verbose' # General logs
LOGGING['handlers']['qr_file']['formatter'] = 'verbose' # Query Retrieve SCU logs
LOGGING['handlers']['store_file']['formatter'] = 'verbose' # Store SCP logs
LOGGING['handlers']['extractor_file']['formatter'] = 'verbose' # Extractor logs

Set the log level. Options are 'DEBUG', 'INFO', 'WARNING', 'ERROR', and 'CRITICAL', with progressively less logging.
LOGGING['loggers']['remapp']['level'] = 'INFO' # General logs
LOGGING['loggers']['remapp.netdicom.qrscu']['level'] = 'INFO' # Query Retrieve SCU logs
LOGGING['loggers']['remapp.netdicom.storescp']['level'] = 'INFO' # Store SCP logs
LOGGING['loggers']['remapp.extractors.ct_toshiba']['level'] = 'INFO' # Toshiba RDSR creation extractor logs

Migrate the database

In a shell/command window, move into the openrem folder:

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/

	Other linux: /usr/lib/python2.7/site-packages/openrem/

	Linux virtualenv: vitualenvfolder/lib/python2.7/site-packages/openrem/

	Windows: C:\Python27\Lib\site-packages\openrem\

	Windows virtualenv: virtualenvfolder\Lib\site-packages\openrem\

python manage.py makemigrations remapp
python manage.py migrate remapp

Systemd service names in Ubuntu installs

Systemd service files were renamed in the the 0.9.1 docs to use openrem-function rather than function-openrem. To
update the service files accordingly, follow the following steps. This is optional, but will make finding them
easier (e.g. sudo systemctl status openrem-[tab][tab] will list them) and these names are assumed for the
Upgrade to Docker and Upgrading a native Linux install docs. However, only the gunicorn service remains after the upgrade to
1.0, so you may find it easier just to remember the only service names, or just rename that one.

sudo systemctl stop gunicorn-openrem.service
sudo systemctl stop celery-openrem.service
sudo systemctl stop flower-openrem.service

sudo systemctl disable gunicorn-openrem.service
sudo systemctl disable celery-openrem.service
sudo systemctl disable flower-openrem.service

sudo mv /etc/systemd/system/{gunicorn-openrem,openrem-gunicorn}.service
sudo mv /etc/systemd/system/{celery-openrem,openrem-celery}.service
sudo mv /etc/systemd/system/{flower-openrem,openrem-flower}.service

sudo systemctl enable openrem-gunicorn.service
sudo systemctl enable openrem-celery.service
sudo systemctl enable openrem-flower.service

sudo systemctl start openrem-gunicorn.service
sudo systemctl start openrem-celery.service
sudo systemctl start openrem-flower.service

Upgrade to 1.0

Now return to Instalación instructions to follow the instructions to 1.0 for your preferred server solution.

After upgrading to version 1.0, there will be automatic tasks that are created to populate the summary fields introduced
in version 0.10.

[image: 0.10 upgrade panel before log in]

Log in as an administrator to start the migration process. If you have
a large number of studies in your database this can take some time. A large database (several hundred studies) on slow
disks might take a day or two, on faster disks or with a smaller database it could take from a few minutes to an hour
or so. You will be able to monitor the progress on the home page as seen in the figure at the bottom of this page.

[image: 0.10 upgrade panel after log in as administrator]

One task per modality type (CT, fluoroscopy, mammography and radiography) is generated to create a task per study in
each modality to populate the new fields for that study. If the number of workers is the same or less than the number
of modality types in your database then the study level tasks will all be created before any of them are executed as
all the workers will be busy. Therefore there might be a delay before the progress indicators on the OpenREM front
page start to update. You can review the number of tasks being created on the Config -> Tasks page.

Before the migration is complete, some of the information on the modality pages of OpenREM will be missing, such as the
dose information for example, but otherwise everything that doesn’t rely on Celery workers will work as normal. Studies
sent directly to be imported will carry on during the migration, but query-retrieve tasks will get stuck behind the
migration tasks.

[image: 0.10 upgrade panel, population of fields in progress]

When the process is complete the “Summary data fields migration” panel will disappear and will not be seen again.

Database administration

Docker installations

Database backup

	Open a shell (command prompt) in the Docker folder

$ docker-compose exec db pg_dump -U openremuser -d openrem_prod -F c -f /db_backup/openremdump.bak

	To automate a regular backup (recommended) adapt the following command in a bash script:

#!/bin/bash
TODAY=$(date "+%Y-%m-%d")
docker-compose -f /path/to/docker-compose.yml exec db pg_dump -U openremuser -d openrem_prod -F c -f "/db_backup/openremdump-"$TODAY".bak"

	or powershell script:

$dateString = "{0:yyyy-MM-dd}" -f (get-date)
docker-compose -f C:\Path\To\docker-compose.yml exec db pg_dump -U openremuser -d openrem_prod -F c -f /db_backup/openremdump-$dateString.bak

You will need to ensure the backups are either regularly deleted/moved, or overwritten so that the backups don’t fill
the disk.

Database restore

To restore a database backup to a new Docker container, install using the Instalación instructions and bring
the containers up, but don’t run the database commands. These instructions can also be used to create a duplicate
server on a different system for testing or other purposes.

	Requires exactly the same version of OpenREM to be installed as the database was exported from

	Copy the database backup to the db_backup/ folder of the new install (the name is assumed to be
openremdump.bak, change as necessary)

	Open a shell (command prompt) in the new install folder (where docker-compose.yml is)

$ docker-compose exec db pg_restore --no-privileges --no-owner -U openremuser -d openrem_prod /db_backup/openremdump.bak

You may get an error about the public schema, this is normal.

	Get the database ready and set up Django:

$ docker-compose exec openrem python manage.py migrate --fake-initial

$ docker-compose exec openrem python manage.py makemigrations remapp

$ docker-compose exec openrem python manage.py migrate --fake

$ docker-compose exec openrem python manage.py collectstatic --noinput --clear

$ docker-compose exec openrem python django-admin compilemessages

The OpenREM server should now be ready to use again.

Advanced

These methods should not be required in normal use; only do this if you know what you are doing!

psql

Start the PostgreSQL console:

$ docker-compose exec db psql -U openremuser openrem_prod

-- List users
\du

-- List databases
\l

-- Exit the console
\q

pgAdmin or other PostgreSQL connections

To access the database directly by pgAdmin or other software, the ports must be exposed.

	Edit docker-compose.yml to add the ports:

db:
 ports:
 - 5432:5432

	If you have a database already running on the host machine, this port will prevent the container
starting. In this case, change the first number in the pair to an alternative port.

	The service will be accessible on the host machine after the containers are taken down and up again:

$ docker-compose down
$ docker-compose up -d

Linux installations

Database backup

	Check the database username and change in the command below as necessary (openremuser)

	Check the database name and change in the command below as necessary (openremdb)

	You will need the password for openremuser

	Ad hoc:

$ sudo -u postgres pg_dump -U openremuser -d openremdb -F c -f openremdump.bak

	To automate a regular backup (recommended) adapt the following command in a bash script:

#! /bin/bash
rm -rf /path/to/db/backups/*
PGPASSWORD="mysecretpassword" /usr/bin/pg_dump -U openremuser -d openremdb -F c -f /path/to/db/backups/openremdump.bak

Database restore

	Requires the same version of OpenREM to be installed as the database was exported from,
unless you are Upgrading a native Linux install or Upgrading to a new Linux server.

	Username can be changed on restore by specifying the new user in the restore command. The user must
exist in PostgreSQL though - sudo -u postgres createuser -P openremuser if required

	openrem/remapp/migrations/ should be empty except __init__.py

$ sudo -u postgres createdb -T template0 new_openremdb_name
$ sudo -u postgres pg_restore --no-privileges --no-owner -U openremuser -d new_openremdb_name path-to/openremdump.bak

	Update the local_settings.py file with the new database details, as per Configure OpenREM

	Set up the new database with Django/OpenREM after activating the virtualenv and moving to the
site-packages/openrem folder:

$ python manage.py migrate --fake-initial
$ python manage.py migrate remapp --fake
$ python manage.py makemigrations remapp
$ python manage.py migrate

Windows installations

Database backup

	Check the database username and change in the command below as necessary (openremuser)

	Check the database name and change in the command below as necessary (openremdb)

	You will need the password for openremuser

	You will need to edit the command for the path to pg_dump.exe - the 14 is likely to be a lower number

	Ad hoc:

C:\Users\openrem>"c:\Program Files\PostgreSQL\14\bin\pg_dump.exe" -U openremuser -d openremdb -F c -f windump.bak

	To automate a regular backup (recommended) adapt the following command in a bat script:

Advertencia

Content to be added!

Database restore

	Requires the same version of OpenREM to be installed as the database was exported from,
unless you are Upgrading a native Windows install or Upgrading to a new Windows server.

	Username can be changed on restore by specifying the new user in the restore command. The user must
exist in PostgreSQL though - create the user in pgAdmin if required

	openrem\remapp\migrations\ should be empty except __init__.py

C:\Users\openrem>"c:\Program Files\PostgreSQL\14\bin\pg_restore.exe" --no-privileges --no-owner -U openremuser -d openremdb -W windump.bak

	Update the local_settings.py file with the new database details, as per Configure OpenREM

	Set up the new database with Django/OpenREM after activating the virtualenv and moving to the
site-packages\openrem folder:

(venv) E:\venv\Lib\site-packages\openrem>python manage.py migrate --fake-initial
(venv) E:\venv\Lib\site-packages\openrem>python manage.py migrate remapp --fake
(venv) E:\venv\Lib\site-packages\openrem>python manage.py makemigrations remapp
(venv) E:\venv\Lib\site-packages\openrem>python manage.py migrate

Webserver configuration

Webserver timeout

Some long running actions can cause webserver errors if they take longer than the timeout setting in the webserver,
particularly generating fluoroscopy Skin dose maps. The default setting is 300 seconds, or five minutes. To modify
this, change the following two settings:

Edit docker-compose.yml in the Docker OpenREM installation folder and change the timeout setting on the following
line:

services:
 openrem:
 container_name: openrem
 command: gunicorn openremproject.wsgi:application --bind 0.0.0.0:8000 --timeout 300

Edit nginx-conf/conf.d/openrem.conf and set the same timeout:

server {
 listen 80;
 location / {
 proxy_pass http://openremproject;
 # ...
 proxy_read_timeout 300s;
 }

Reload the containers:

$ docker-compose down
$ docker-compose up -d

Non-Docker install

Change the same settings as for the Docker install above:

$ sudo nano /etc/nginx/sites-available/openrem-server

and

$ sudo nano /etc/systemd/system/openrem-gunicorn.service

ExecStart=/var/dose/veopenrem3/bin/gunicorn \
 --bind unix:/tmp/openrem-server.socket \
 openremproject.wsgi:application --timeout 300

Adding an SSL certificate

It is advisable to add an SSL certificate to the web server even though it might only be accessible within an
institution. There are several reasons for this, but one main one is that over time web browsers will give more and more
warnings about entering passwords into non-HTTPS websites.

It is likely that within your institution there will be a corporate trusted root certificate and a mechanism of getting
certificates you generate for your servers signed by that root certificate. How to generate a certificate signing
request (CSR) and private key are beyond the scope of these documents, but this blog post was helpful when we were
learning how to do this at our institution:
https://www.endpoint.com/blog/2014/10/30/openssl-csr-with-alternative-names-one

Once you have a signed certificate, place it and the key in nginx-conf/certs, where it will be available in the
Nginx container at /etc/ssl/private.

There are two conf files in nginx-conf/conf.d - the default one is openrem.conf. There is an alternative one
named openrem-secure.conf.example. Edit the second file as required, then rename them both so the secure version
is the only one to have a .conf ending.

Ensure the the following lines are updated for the name of your server and the names of your signed certificate and key:

server {
 listen 443 ssl;
 server_name add_server_name_here;
 ssl_certificate /etc/ssl/private/openrem.cer;
 ssl_certificate_key /etc/ssl/private/openrem.key;

 # ...
}

Running the OpenREM website in a virtual directory

If you want to run the OpenREM in a virtual directory (like http://server/dms/) you need to configure this in your
web server configuration as well as in the OpenREM configuration.

The following steps are necessary:

	Configure virtual directory settings in the Docker .env.prod file

	Update Nginx webserver configuration

	Update the reverse.js file

	Restart the containers

Docker setup

Stop the containers if they are running before changing the configuration, using a shell (command prompt) in the Docker
OpenREM installation folder

$ docker-compose down

Configure virtual directory settings in .env.prod

Django needs to know the virtual directory name and which URLs the static and media files are served from.

Edit .env.prod, uncomment the following lines (remove the #) and set them as appropriate. The
VIRTUAL_DIRECTORY setting must have a trailing /. For example, to serve the website from a subfolder/virtual
directory named dms:

For installations in a virtual directory
VIRTUAL_DIRECTORY=dms/
MEDIA_URL=/dms/media/
STATIC_URL=/dms/static/

Modify webserver configuration

Edit nginx-conf/conf.d/openrem.conf to update the locations — again using the example virtual directory dms:

server {
 listen 80;
 location /dms/ {
 proxy_pass http://openremproject;
 # ...
 }
 location /dms/static/ {
 alias /home/app/openrem/staticfiles/;
 }
 location /dms/media/ {
 alias /home/app/openrem/mediafiles/;
 }
}

Start the containers

$ docker-compose up -d

Update reverse.js

The static reverse.js file should be updated in order to change the URLs in the static javascript files.

Open a shell (command prompt) and navigate to the Docker OpenREM installation folder

$ docker-compose exec openrem python manage.py collectstatic_js_reverse

Test!

You should now be able to reach the OpenREM interface using the virtual directory address.

Non-Docker install

$ sudo systemctl stop openrem-gunicorn.service
$ sudo systemctl stop nginx.service

Update local_settings.py

Update local_settings.py with the same variables as in the .env.prod file. If the values aren’t in your copy
of the file just add them in:

$ cd /var/dose/veopenrem3/lib/python3.10/site-packages/openrem/
$ nano openremproject/local_settings.py

VIRTUAL_DIRECTORY = "dms/"
STATIC_URL = "/dms/static/"
MEDIA_URL = "/dms/media/"

Modify webserver configuration

$ sudo nano /etc/nginx/sites-available/openrem-server

server {
 # ...
 location /dms/static {
 alias /var/dose/static;
 }
 location /dms {
 proxy_pass http://unix:/tmp/openrem-server.socket;
 # ...
 }
}

Update reverse.js

$. /var/dose/veopenrem3/bin/activate
$ cd /var/dose/veopenrem3/lib/python3.8/site-packages/openrem/
$ python manage.py collectstatic_js_reverse

Restart the services

$ sudo systemctl start openrem-gunicorn.service
$ sudo systemctl start nginx.service

Start all the services

Test web server

In a shell/command window, move into the openrem folder:

	Ubuntu linux: /usr/local/lib/python2.7/dist-packages/openrem/

	Other linux: /usr/lib/python2.7/site-packages/openrem/

	Linux virtualenv: vitualenvfolder/lib/python2.7/site-packages/openrem/ (remember to activate the virtualenv)

	Windows: C:\Python27\Lib\site-packages\openrem\

	Windows virtualenv: virtualenvfolder\Lib\site-packages\openrem\ (remember to activate the virtualenv)

Web access on OpenREM server only

Run the built in web server:

python manage.py runserver --insecure

In a web browser on the same computer, go to http://localhost:8000/ - you should now see the message about creating
users.

Web access on other computers

The built-in webserver only provides a service on the computer OpenREM is installed on by default (it’s only there
really for testing). To view the OpenREM interface on another computer, you need to modify the runserver command:

python manage.py runserver --insecure 0.0.0.0:8000

This will enable the web service to be available from other computers on the network. If your server has several
network cards and you want to restrict it to one, then you can use a real address rather than 0.0.0.0. Likewise you can
specify the port (here it is 8000).

In a web browser on a different computer on the same network, go to http://192.168.1.10:8000/ (changing the IP address
to the one you are running the server on) and you should see the OpenREM interface and the message about creating users.

Nota

Why are we using the --insecure option? With DEBUG mode set to True
the test web server would serve up the static files. In this release,
DEBUG mode is set to False, which prevents the test web server
serving those files. The --insecure option allows them to be served again.

Configure the settings

	Follow the link presented on the front page to get to the user and group administration.

[image: Initial home page with no users in groups]

[image: Configuration menu]

	After the first users are configured, this link will no longer be presented and instead you can go to
Config -> Users.

	You will need the superuser username and password you created just after creating the database. The groups are

	viewgroup can browse the data only

	importsizegroup can use the csv import facility to add patient height and weight information

	importqrgroup can use the DICOM query-retrieve facility to pull in studies, as long as they are pre-configured

	exportgroup can view and export data to a spreadsheet

	pidgroup can search using patient names and IDs depending on settings, and export with patient names and IDs
if they are also a member of the exportgroup

	admingroup can delete studies, configure DICOM Store/QR settings, configure DICOM keep or delete settings,
configure patient ID settings, and abort and delete patient size import jobs. Members of the admingroup no longer
inherit the other groups permissions.

[image: Selecting groups in Django user admin]

	In addition to adding users to these groups, you may like to grant a second user superuser and staff status
so that there are at least two people who can manage the users

	Return to the OpenREM interface (click on View site at the top right)

[image: Link from Django user admin back to OpenREM]

	Follow the link to see more information about how you want OpenREM to identify non-patient exposures, such as QA.
See Not-patient indicator settings.

	Go to Config -> DICOM object delete settings and configure appropriately (see Delete objects configuration)

	Go to Config -> Patient ID settings and configure appropriately (see Patient identifiable data)

	If you want to use OpenREM as a DICOM store, or to use OpenREM to query remote systems, go to
Config -> Dicom network configuration. For more information go to Importing data to OpenREM.

	With data in the system, you will want to go to Config -> View and edit display names and customise
the display names. An established system will have several entries for each device, from each time the software
version, station name or other elements changes. See Display names and user-defined modalities for more information

Start using it - add some data!

See Importing data to OpenREM

Configuration and administration

	Home page options
	Display of workload information

	Delete objects configuration
	Configure what is deleted

	Reviewing the settings

	Display names and user-defined modalities
	The display name field

	User defined modality field

	Viewing X-ray system display names and user defined modality

	Setting display name automatically for known devices

	Changing X-ray system display names and user defined modality

	Review of studies that failed to import

	Systems where Device Observer UID is not static

	Not-patient indicator settings
	Setting the patterns to identify non-patient studies

	Replicating behaviour of release 0.7.4 and earlier

	Patient identifiable data
	Configure what is stored

	Store encrypted data only

	Using patient identifiable data

	Deleting studies
	Individual studies

	All studies from one source

	Failed import studies

	Adding patient size information from csv using the web interface
	Uploading patient size data

	Importing the size data to the database

	Reviewing previous imports

	Deleting import logs

	Adding patient size information from csv using the command line

	Fluroscopy high dose alerts
	Alert level configuration

	Alerts for cumulative dose over a period of time

	Recalculation of summed data

	E-mail notifications of high dose alerts

	Task management
	Viewing task and service statuses

	Terminating running tasks

	Configuring the size of task history

Home page options

Contenido

	Home page options

	Display of workload information

Display of workload information

[image: Config options]

Figure 1: The Config menu (user and admin)

The home page can be configured to show the number of studies carried out in
the past 7 (default) and 28 (default) days for each system. These default
values can be changed by logging in, clicking on the Config menu at the
right-hand end of the navigation bar, and then selecting the Home page
options entry under User level config shown in the upper section of
figure 1. This takes the user to a page where the two time periods can be
viewed and updated (figure 2).

[image: The home page options form]

Figure 2: The home page options form

By default the display of workload information is disabled; this can be changed
by an OpenREM administrator via the Home page options. When an OpenREM
administrator views the home page options a tick box is included that enables or
disables the display of workload data on the home page (figure 3).

[image: The home page options admin form]

Figure 3: The home page options admin form

When workload information is displayed, the link to the system data is modified in the workload cells
to filter the studies to the same date range.

Delete objects configuration

OpenREM is able to automatically delete DICOM objects if they can’t be used by OpenREM or if they have been processed.
This has the following advantages:

	The server doesn’t need to have much storage space

	It can help with information governance if the database is set to not store patient identifiable data (see
Patient identifiable data)

Advertencia

If OpenREM is set to delete objects and you pass a local file to OpenREM using the command line, the source file
will be deleted (as long as the filesystem permissions allow).

Configure what is deleted

[image: Config menu]

The Config menu

Use the Config menu and select DICOM object deletion:

This will open the configuration page:

[image: Modify DICOM object delete settings]

Modify DICOM object deletion policy

The initial settings are to not delete anything. However, you are likely to want to delete objects that don’t match any
import filters, and also to delete images such as mammo, DX and Philips CT, as these will take up space much more
quickly than the radiation dose structured reports.

Reviewing the settings

When you have set your preferences, you will be redirected to the DICOM network configuration page, where at the bottom
you can review the current settings:

[image: DICOM object deletion poligy review on DICOM config page]

Deletion policies can be reviewed on the DICOM network configuration page

More information about the DICOM network configuration can be found on the Direct from modalities page.

Display names and user-defined modalities

Contenido

	Display names and user-defined modalities

	The display name field

	User defined modality field

	Viewing X-ray system display names and user defined modality

	Setting display name automatically for known devices

	Changing X-ray system display names and user defined modality

	Dual modality systems

	Review of studies that failed to import

	Systems where Device Observer UID is not static

The display name field

Previous versions of OpenREM used each X-ray system’s DICOM station name as
the identifier for each X-ray system. The front page showed a summary of the
number of studies for each unique station name stored in the system.
This led to a problem if multiple X-ray systems used the same station name: the
OpenREM home page would only show one station name entry for these systems,
with the number of studies corresponding to the total from all the rooms. The
name shown alongside the total was that of the system that had most recently
sent data to the system.

This issue has been resolved by introducing a new field called
display name. This is unique to each piece of X-ray equipment, based on the
combination of the following eight fields:

	manufacturer

	institution name

	station name

	department name

	model name

	device serial number

	software version

	gantry id

The default text for display name is set to a combination of
institution name and station name. The default display name text can be changed by a user in the admingroup
— see Setting display name automatically for known devices

User defined modality field

OpenREM determines the modality type of a system based on the information in
the DICOM radiation dose structured report. However sometimes this mechanism fails
because vendors use templates meant for RF also for DX systems. Therefore it
is possible from version 0.8.0 to set a modality type for each system manually.
A manually set modality type overrides the automatically determined value.

Viewing X-ray system display names and user defined modality

[image: User options menu]

The Config menu (user)

If you log in as a normal user then the Config menu becomes available
at the right-hand end of the navigation bar at the top of the screen.

The third option, View display names & modality, takes you to a page where
you can view the list of X-ray systems with data in OpenREM together with their
current display name and user defined modality. If the user defined modality
is not set, the value contains None. The X-ray systems are grouped
into modalities and displayed in five tables: CT; mammography; DX and CR;
fluoroscopy; and other.

[image: List of current display names]

Example list of display names

Setting display name automatically for known devices

If you are a member of the admingroup you can set an option to
automatically set the display name of already known devices even if one of
the above mentioned fields changed.
A device can send its Device Observer UID (especially in rdsr-objects). This
is a unique ID for the device. If this UID is received by OpenREM it can set
the display name and modality type the same as an already known device with
the same Device Observer UID. This option can be useful if other parameters
that OpenREM looks at frequently change. If you want to see if one of the
other parameters changed (like software version), don’t tick this option.

Changing X-ray system display names and user defined modality

[image: Admin menu]

The Config menu (admin)

If you wish to make changes to a display name or to the user defined
modality then you must log in as a user that is in the admingroup. You will
then be able to use the Display names & modality item under the
Config menu:

This will take you to a page where you can view the list of X-ray systems with
data in OpenREM. If you wish to change a display name or the user defined modality
then click on the corresponding row. The resulting page will allow you to
edit these parameters. Click on the Update button to confirm your changes:

[image: Update a display name]

Example of the page for updating a display name and user defined modality

You can change multiple rows at once. For display names you may wish to do this
if a system has a software upgrade, for example, as this will generate a new
default display name for studies carried out after the software upgrade has
taken place. The studies from these will be grouped together as a single entry
on the OpenREM homepage and individual modality pages.

If you update the user defined modality, the modality type for already imported
studies will also be set to the user defined modality type. Only changes
from modality DX (planar X-ray) to RF (fluoroscopy) and vice versa are possible.

Dual modality systems

Some systems are dual purpose in that they can be used in both standard planar X-ray mode and in fluoroscopy mode. For
these systems you can configure them as “Dual” and OpenREM will attempt to reprocess all the studies related to the rows
you have selected and assign them to DX or RF. The studies will then be displayed in the right sections in the web
interface and will export correctly. New RDSRs relating to that X-ray system will be assigned a modality in the same
way.

After an X-ray system has been set to Dual you may wish to reprocess the studies to assign modality again. To do this
you can use the “reprocess” link in the “User defined modality” cell:

[image: Reprocess Dual link]

Re-sort studies into planar X-ray and fluoroscopy

Review of studies that failed to import

Studies that have failed early in the import process might not have an entry in the unique_equipment_name table, and
therefore will not appear in any of the other tables on this page. The table at the end allows the user to review these
studies and delete them. See Failed import studies for more details.

Systems where Device Observer UID is not static

OpenREM users have found one x-ray system which incorrectly sets the Device Observer UID to be equal to the Study
Instance UID. In this situation a new entry is created in the display name settings for every new exam that arrives
in OpenREM, making the display name table fill with many duplicate entries for the same system. To avoid this problem
a list of models can be specified using the variable below - OpenREM will ignore the Device Observer UID value when
creating new display names for any model in this list. The model name text must exactly match what is contained in
the system’s Manufacturer’s Model Name DICOM tag (0008,1090).

IGNORE_DEVICE_OBSERVER_UID_FOR_THESE_MODELS = ['GE OEC Fluorostar']

	For Docker installations, this setting is in the Configuración del Docker env.

	For Linux installations, see the Configure OpenREM docs.

	For Windows installations, see the Configure OpenREM docs.

Not-patient indicator settings

The standard configuration for OpenREM is to not store any patient identifiable information. Therefore it can be
difficult to distinguish between real patients and test or quality assurance exposures.

Changed in 0.8.0

To aid identification of non-patient exposures, the patient name and the patient ID are checked against a set of
patterns, and if a match is found then the pattern is recorded in the database before the patient name and ID are
deleted or converted to a hash (see Patient identifiable data for details).

Setting the patterns to identify non-patient studies

[image: Config menu]

The Config menu

Use the Config menu and select Not-patient indicators:

The patient name and the ID are matched against the patterns you configure. The patterns make use of wildcards as per
the following table, and are case insensitive:

	Pattern

	Meaning

	*

	matches everything

	?

	matches any single character

	[seq]

	matches any character in seq

	[!seq]

	matches any character not in seq

To match all studies where the patient name begins with physics, the pattern should be set to physics*. This
would match Physics^RoutIQ but not match Testing^Physics. The patient name in DICOM is normally formatted
Family name^Given name^Middle name^Prefix^Suffix. Therefore to match any studies where the first name is Test,
you would set the pattern to be *^test*.

If your test patient name always starts with PHY and then a number, you might use this pattern: phy[0-9]*.
Here we have used a range for the sequence to match any number, but it will only match one character per sequence, so a
* is required to match all the characters after the first number. This pattern will match Phy12345 and
PHY6test but not Phyliss.

The pattern list for patient name and the list for patient ID are separate, so both need to be populated to meet your
requirements.

Creating new patterns

Click on Add ID patterns or Add name patterns in the panel title bar and follow the instructions.

Modifying patterns

Click the Modify link in the row of the pattern you wish to modify.

Deleting patterns

Click the Delete link in the row of the pattern you wish to delete. You will be asked to confirm the deletion.

Replicating behaviour of release 0.7.4 and earlier

OpenREM releases before 0.8 had the not-patient identification patterns hard-coded. From release 0.8.0 the patterns are
(admin) user configurable, but will start with no patterns in place. To add the patterns that would maintain the
behaviour of previous releases, use the link at the bottom of the config page, or the link in the add/modify pages.

Patient identifiable data

Prior to version 0.7, no data that is generally considered to be patient identifiable was stored in the OpenREM database.

The following patient descriptors have always been recorded if they were available:

	Patient age at the time of the study, but not date of birth (though this could be calculated from age)

	Patient sex

	Patient height

	Patient weight

In addition, a key identifier for the exam that is normally not considered patient identifiable was stored:

	Study accession number

It has become apparent that there are reasons where people need to store patient identifiable data to make the most of
OpenREM, so this is now configurable from version 0.7 onwards.

Configure what is stored

[image: Configuration menu]

On the Config menu, select Patient ID:

The initial settings are as follows:

[image: Modify patient identifiable data settings]

The default for patient name, ID and date of birth is to not store them. There isn’t an option currently to not store
the accession number, though OpenREM continues to work if it is missing.

To store patient identifiable data from now on, select the relevant box and press Submit. If you change the
setting again later, then data already stored will remain in the database.

Store encrypted data only

If you wish to have the patient name and/or ID available for finding studies relating to a specific patient, but do
not need to identify who that patient is, then it is possible to create an “encrypted” version of the ID or name. In this
case, a one-way SHA 256 hash is generated and the hash value is stored instead.

If exactly the same name or ID (including spelling, spacing, case etc) occurs more than once, then the same hash
will be generated.

The same applies to accession numbers if the option to encrypt the accession number is selected.

Using patient identifiable data

Querying for patient studies

In the modality pages of the OpenREM web interface, if you are in the pidgroup you will have a filter for patient
name and patient ID available:

[image: Patient name and ID in search filter]

If the values in the database are not encrypted, then partial search terms can be used as a case-insensitive
“contains” query will be applied.

If the values are encrypted, then only the entire string, with exactly the same case, spacing and punctuation will
match. This is more likely to be successful with patient ID than with patient name.

Study export with patient identifiers

Users in the pidgroup will have extra export buttons available in the modality pages:

[image: Export buttons for pidgroup users]

If the IDs or names are encrypted, then these columns will contain the hash rather than the original values. However, it
will be possible to see if more than one study belongs to one patient as the values should be the same for both. Due to
the nature of the algorithm however, a single change in the name or ID - such as an upper case letter instead of a lower
case one - will be recorded as a completely different hash value.

Any exports with either patient name or patient ID included will also have a date of birth column.

Deleting studies

Individual studies

If you log in as a user that is in the admingroup, then an extra column is appended in
the filtered view tables to allow studies to be deleted:

[image: Deleting studies]
Clicking on delete takes you to a confirmation page before the delete takes place.

All studies from one source

[image: Admin menu]

The Config menu (admin)

If you log in as a user that is in the admingroup, on the Config menu select Display names & modality to
get to a list of all the X-ray systems with data in OpenREM. More information about Display names and user-defined modalities.

Each row is a unique combination of all the column headers, so if a modality has a software update for example this will
usually mean a new row is started.

In the last column is a link to Review the studies from that source. This can be useful for troubleshooting a
particular source, or you can use it to delete all the studies from one source in one go.

[image: Source study review]

Source equipment review page with study delete options

The details for that source are displayed, along with a table showing which sort of data is contained in each study.
Above the “Study deletion options” panel the following two numbers are indicated:

	The number of studies associated with this equipment

	The number of studies associated with this equipment after being filtered by the indicated modality type

If the second number is smaller than the first, this will indicate that some of the studies from the equipment have
been labelled with a different modality type. There will therefore be an entry in one of the other tables on the
equipment display name page.

Delete studies and table entry

Use this button if you want to delete all the studies and remove the entry that has been made in the Unique Equipment
Names table. Otherwise, the entry would remain but with zero studies associated with it. The deletion takes a second
confirmation step.

If there are studies associated with this equipment that are listed with a modality type different to the one shown,
those studies will not be deleted and the table entry will not be removed.

Delete studies

If you have associated this table entry with a Display name and you want any future studies to fall under the same
name, you can leave the entry in the Unique Equipment Names table. You might want to do this for example if you have
a Display name of “CR” or “Imported”. Again, there is a confirmation step.

Again, only the studies associated with this equipment that have the same modality type as shown will be deleted.

Failed import studies

At the bottom of the Display names & modality page is a table listing the number of studies that are in the
database, but do not have an entry in the unique_equipment_name table. This usually indicates a study that has
failed early in the import process.

Users in the admingroup are able to click on the links to review the studies on a per-modality basis. This will list
the information that is available, which might indicate which system they came from, what times, dates and accession
numbers.

The user is then able to delete all the failed import studies in the list.

Before release 0.8.2, these studies would appear in the homepage listing as
Error has occurred - import probably unsuccessful. This has now changed to a link to the review page for that modality
with the text Failed import - review here for users in the admingroup and
Failed import - ask an administrator to review for other users.

Adding patient size information from csv using the web interface

Contenido

	Adding patient size information from csv using the web interface

	Uploading patient size data

	Importing the size data to the database

	Reviewing previous imports

	Deleting import logs

	Adding patient size information from csv using the command line

Uploading patient size data

If you log in as a user that is in the admingroup, then a menu is
available at the right hand end of the navigation bar:

[image: Admin import patient size data menu]
The first option takes you to a page where you can upload a csv file
containing details of the patient height and weight, plus either the
accession number or the Study Instance UID.

[image: Uploading CSV files containing patient size information]
[image: Upload patient size csv file button]
The csv file needs to have at least the required columns. Additional columns
will be ignored. If your source of patient size data does not have either the
height or the weight column, simply add a new empty column with just the title
in the first row.

When you have selected the csv file, press the button to upload it.

Importing the size data to the database

On the next page select the column header that corresponds to each of the
head, weight and ID fields. Also select whether the ID field is an Accession number
or a Study UID:

When the column headers are selected, click the “Process the data” button.

[image: Selecting header information]
The progress of the import is then reported on the patient size imports page:

[image: Patient size importing]
During the import, it is possible to abort the process by clicking the button
seen in the image above. The log file is available from the completed
table whether it completed or not - there is no indication that the import
was aborted.

As soon as the import is complete, the source csv file is deleted from the
server.

Reviewing previous imports

After an import is complete, it is listed in the completed import tasks
table. You can also get to this page from the Admin menu:

[image: Imports link]
For each import, there is a link to the logfile, which looks something like this.
With this import accession numbers weren’t available so the patient size
information was matched to the study instance UID:

[image: Size import logs]

Deleting import logs

The completed import tasks table also has a delete check box against each
record and a delete button at the bottom. The csv file originally imported
has already been deleted - this delete function is to remove the record
of the import and the log file associated with it from the database/disk.

Adding patient size information from csv using the command line

Usage:

openrem_ptsizecsv.py [-h] [-u] [-v] csvfile id height weight

	-h, --help
	Print the help text.

	-u, --si-uid
	Use Study Instance UID instead of Accession Number.

	-v, --verbose
	Print to the standard output the success or otherwise of inserting each value.

	csvfile
	csv file containing the height and/or weight information and study identifier.
Other columns will be ignored. Use quotes if the filepath has spaces.

	id
	Column title for the accession number or study instance UID. Use quotes
if the title has spaces.

	height
	Column title for the patient height (DICOM size) - if this information
is missing simply add a blank column with a suitable title. Use quotes
if the title has spaces.

	weight
	Column title for the patient weight - if this information is missing
simply add a blank column with a suitable title. Use quotes if the title
has spaces.

Fluroscopy high dose alerts

Contenido

	Fluroscopy high dose alerts

	Alert level configuration

	Alerts for cumulative dose over a period of time

	Recalculation of summed data

	E-mail notifications of high dose alerts

Alert level configuration

[image: Config options]

Figure 1: The Config menu (user and admin)

The system highlights fluoroscopy studies that have exceeded defined levels of
DAP, total dose at reference point and peak skin dose. These alert levels can be configured by
an OpenREM administrator via the Fluoro alert levels option in the Config
menu (figure 1).

The default alert levels are 20000 cGy.cm2 DAP, 2 Gy total dose at
reference point and 2 Gy peak skin dose(figure 2).

[image: Fluoroscopy high dose alert settings]

Figure 2: Fluoroscopy high dose alert settings

Figures 3 and 4 illustrate how studies that exceed an alert level are
highlighted in the filtered and detailed fluoroscopy views.

[image: Filtered view showing the highlighting of some high dose studies]

Figure 3: Filtered view showing the highlighting of some high dose studies

[image: Detailed view showing high-dose highlighting]

Figure 4: Detailed view showing high-dose highlighting

Alerts for cumulative dose over a period of time

As well as alerting to individual studies that exceed alert levels the system
can be configured to calculate cumulative dose over a defined number of weeks
for studies with matching patient IDs. When this is activated, for each study
OpenREM looks for earlier fluoroscopy studies that have taken place that share
the same patient ID, or encrypted patient ID, and sums the study DAP and total
dose at reference point values. The time period that is used is configured by
an OpenREM administrator, and defaults to 12 weeks (figure 2). This feature has
not yet been implemented for the skin dose.

For this feature to work the storage of patient ID or encrypted patient ID must
be enabled (see the Patient identifiable data documentation).

The configuration settings for this feature are (figure 2):

	The number of previous weeks over which to sum DAP and dose at RP for studies
with matching patient ID is defined in the options

	The display of summed DAP and dose at RP values in the fluoroscopy filtered
and detailed views, and in e-mail notifications

	The automatic calculation of summed DAP and dose at RP for new studies
imported into OpenREM

An example of a study where there is another study with matching patient ID is
shown below in figure 5. In this example neither of the two individual studies
had doses that exceeded an alert level, but when summed together the total dose
at RP does exceed the corresponding alert.

[image: Detailed view showing associated studies over a time period]

Figure 5: Detailed view showing associated studies over a time period

Recalculation of summed data

After upgrading from a version of OpenREM prior to 0.8.2, or after changing
the alert levels or number of weeks to look for matching data, the summed
dose values must be recalculated. The user is prompted to do this via the
display of an orange button, as shown in figure 6 below. If settings have
changed an information message is also displayed at the top of the screen.

[image: Prompt to recalculate the summed dose values]

Figure 6: Prompt to recalculate the summed dose values

Recalculation of the summed data is likely to take several minutes. During this
time the form buttons are faded out and disabled, and a spinning icon is shown
in the middle of the page (figure 7). The user must remain on this page until
the calculations are complete.

[image: Recalculating the summed dose values]

Figure 7: Prompt to recalculate the summed dose values

Once all summed data has been recalculated the orange recalculate button is
hidden, the other form buttons are reactivated and the user is shown a
success message at the top of the screen (figure 8, below).

[image: Recalculating the summed dose values]

Figure 8: Message on successful recalculation

E-mail notifications of high dose alerts

For this feature to function the e-mail section in local_settings.py must
be correctly completed (see the : ref :email_configuration documentation) and
the e-mail server must allow sending of messages that originate from the
OpenREM server, or from the authenticated user specified in the e-mail
settings.

OpenREM users can be automatically sent e-mail notifications of studies that
have exceeded a high dose alert level. This feature can be enabled or disabled
by an OpenREM administrator on the High dose alerts configuration page as
shown in figure 2 above.

Alert recipients users are chosen by navigating to the Fluoro alert notifcation
page via the Config menu. Figure 9 shows an example of the notification page.

It should be noted that any OpenREM user selected to receive high dose alerts
must have an e-mail address entered in their user profile.

[image: E-mail user-notification of high-dose alerts]

Figure 9: E-mail user-notification of high-dose alerts

Task management

Contenido

	Task management

	Viewing task and service statuses

	Terminating running tasks

	Configuring the size of task history

Viewing task and service statuses

[image: Config options]

Figure 1: The Tasks menu

Users who are logged in with admin rights can use the Tasks menu and choose All tasks to see the following:

	A list of the tasks currently being executed

	A list of previous tasks and their final status. If any errors occurred they will be displayed here.

[image: Task and service status]

Figure 2: The task administration page

Terminating running tasks

It is possible to terminate any active tasks by clicking the red button. There is no confirmation step.
Note that this immediately interrupts everything this process was doing so far, leading to things like partially
imported studies. In general this should not be an issue (in case of aborted imports they
should be completed when you start importing them again), but note that there is a certain risk in killing tasks
and use this only as a last resort.

A note on move: executing a move will create a task which then produces import tasks for all the studies it should
import. This means if you intend to abort a move you should abort the task with Task type «move» and not the import
tasks started by that process!

Configuring the size of task history

The status of 2000 active, recent and older tasks are stored in the OpenREM database. This limit can be
altered by users who are logged in with admin rights by clicking on Task settings in the Config menu and
changing the current value. If this limit is set to a very high value it can cause the web browser to run out of
memory when trying to view the Task page due to the large number of rows in the tables.

Importing data to OpenREM

From local DICOM files

If you have RDSRs or RRDSRs, DX, MG, PET or NM images or Philips CT Dose Info images, you can import them directly into OpenREM:

	Importing from DICOM files
	Radiation Dose Structured Reports

	Radiopharmaceutical Radiation Dose Structured Reports

	For mammography DICOM images

	For radiographic DICOM images

	For PET/NM DICOM images

	For CT dose summary files from Philips CT scanners

	For CT dose summary files from older Toshiba CT scanners

If you want some examples, you can find the DICOM files that we use for the automated testing in the
openrem/remapp/tests/test_files folder in your OpenREM installation.

Direct from modalities

For production use, you will either need the modalities to send the RDSR or images directly to your OpenREM server using
DICOM, or you will need to use query-retrieve to fetch the DICOM objects from the PACS or the modalities. In either of
these situations, you will need to run a DICOM Store service on your OpenREM server.

	DICOM Network Configuration
	Configuring DICOM store nodes in OpenREM

	Status of DICOM Store SCP nodes

	Query retrieve of third-party system, such as a PACS or modality

	Troubleshooting: openrem_store.log

DICOM Store

The Orthanc DICOM server is recommended; another store can be used instead but documentation is not provided. Docker
installs have the Orthanc server build-in. For non-Docker installs, instructions are included in the main installation
documentation:

	Linux: DICOM Store SCP

	Windows: to be written

Query-retrieve from a PACS or similar

Before you can query-retrieve objects from a remote PACS, you need to do the following:

	Create a DICOM Store service to receive the DICOM objects - see Direct from modalities above.

	Configure OpenREM with the settings for the remote query-retrieve server:

	Configuration required for query-retrieve

	Configure the settings of your DICOM store service on the PACS

	Learn how to use it:

	DICOM Query Retrieve Service
	Query-retrieve using the web interface

	Query-retrieve using the command line interface

	Query filtering logic

	DICOM query summary

	Troubleshooting: openrem_qr.log

Importing from DICOM files

If you are using linux, or for Windows if you have put
C:\Python27\;C:\Python27\Lib\site-packages;C:\Python27\Scripts onto
your system path, you should be able to import from the command line:

Radiation Dose Structured Reports

openrem_rdsr.py filename.dcm

You can use wildcards to process a number of files at once, ie:

openrem_rdsr.py *.dcm

	Cumulative and continued study RDSRs

Radiopharmaceutical Radiation Dose Structured Reports

You can use the same import script as for Radiation Dose Structured Reports.

For mammography DICOM images

openrem_mg.py filename.dcm

The facility for extracting dose information from mammography DICOM images
has been designed and tested with images created with the GE Senographe DS.
It has now also been used with the images generated by the
following systems:

	GE Senographe Essential

	Hologic Selenia

	Siemens Inspiration

For radiographic DICOM images

openrem_dx.py filename.dcm

For PET/NM DICOM images

openrem_nm.py filename.dcm

Note that more complete information can be loaded from the RRDSRs if available. For PET images the PET series
information can be added to the RRDSR data.

For CT dose summary files from Philips CT scanners

openrem_ctphilips.py filename.dcm

This extractor makes use of the information stored in the header data of the Philips Secondary Capture object with a
series description of “Dose Info”. The value inserted into “Study description” in the OpenREM database is actually taken
from the Protocol field. The value in Study description is inserted into the study level comment field in the database,
along with the protocol file name and any “comments on radiation dose”.

For CT dose summary files from older Toshiba CT scanners

openrem_cttoshiba.py path_to_files

This extractor is designed to create a DICOM radiation dose structured report
from the information contained in secondary capture dose summary images,
supplemented by data stored in image tags. It requires a folder of DICOM
objects as input (suitable data can be retrieved from a DICOM node using the
qrscu.py command with the -toshiba switch - see Query-retrieve using the command line interface).
It creates an initial RDSR from the secondary capture dose summary, and then
tries to enrich this with additional information contained in image tags. The
routine attempts to extract the following information from the image tags and
insert it into the initial RDSR:

Study-level information

	Study description

	Requested procedure description

	Software versions

	Device serial number

Series-level information

	Protocol name

	Exposure time (per rotation)

	kVp

	Spiral pitch factor

	Nominal total collimation width

	Nominal single collimation width

	Exposure modulation type

The routine was developed for older Toshiba CT scanners that
cannot create RDSR objects themselves. It is known to work with:

	Toshiba CX, software version V4.40ER011

	Toshiba CXL, software version V4.51ER014

	Toshiba CXL, software version V4.86ER008 (this software version can
produce RDSR objects directly, but may not populate some fields, such as
requested procedure name and study description)

This extractor has also been used successfully on images from a GE LightSpeed
Plus scanner, although in this case no supplementary data is extracted from
image tags.

Cumulative and continued study RDSRs

Background

Cumulative RDSRs

Some modalities are configured to send an RDSR after every exposure, with each new RDSR containing a complete record of
the examination up to that point. For example, this is what the current version of the Siemens CT scanner software does.

Continued study RDSRs

On most systems the RDSR is sent when the study is completed. If the study is then restarted, the system must create a
new RDSR. On a Siemens CT system, this new RDSR will have the same Study Instance UID and the same accession number,
but the content will only refer to the continued study, not the original study.

Pre-0.8.0 OpenREM behaviour

Prior to release 0.8.0, OpenREM would check the Study Instance UID on import and check the value against the existing
studies in the database. If a match was found, then the new RDSR was rejected on the basis that it must be a duplicate.

This would therefore ignore both cumulative and continued study RDSRs which means your database might be filled with
single event studies, and you won’t have details of any continued studies.

Current OpenREM behaviour

New imports

On import of the first RDSR in a study, the SOP Instance UID of the RDSR is recorded with the study. This is an ID
that is unique to that RDSR object - any further RDSRs might have the same Study Instance UID, but will always have a
different SOP Instance UID.

When the second RDSR is imported, the duplicate StudyInstanceUID will trigger OpenREM to check the SOP Instance UID of
the new RDSR against the one(s) stored with that study. If there is a match, the new RDSR is ignored as it has already
been processed. If it does not match, then the Irradiation Event UID of each exposure in the new RDSR is compared to the
Irradiation Event UIDs already in the database for that study, to establish if the new RDSR carries new information that
should be imported.

In the case of a cumulative RDSR that is sent after each event, the original study is deleted from
the database and is replaced by the newer one if it has additional events.

In the case of a continued study RDSR which has
a completely different set of events, the new RDSR is imported alongside the existing one.

Existing studies imported before 0.8.0

RDSRs imported before upgrading to 0.8.0 will not have the SOP Instance UID recorded in the database and so the new
RDSR will be compared at event level with the existing study before making an import decision, as with new studies.

Fixing existing studies

Importing from file

If you are have a store of the RDSRs that were previously rejected, import them all again and this time they should be
processed properly.

For example on my system, using linux, each scanner started sending per-exposure RDSRs from the date they were upgraded.
I found the RDSRs from that date to the date I upgraded OpenREM and imported them:

touch --date "2018-01-06" tmpdate20180106
touch --date "2018-02-07" tmpdate20180207
find RDSRs/ -newer tmpdate20180106 ! -newer tmpdate20180207 -name *.dcm -exec openrem_rdsr.py {} \;

Importing via query-retrieve

The query-retrieve duplicates processing has been updated to compare SOP Instance UIDs returned by the remote node (the
PACS) with the SOP Instance UIDs stored with each study in OpenREM. Therefore, after an initial import of each RDSR
in your search, any subsequent query should drop any RDSRs that have previously been processed and not move them a
second time.

DICOM Network Configuration

Configuring DICOM store nodes in OpenREM

You need to configure details of the DICOM store node to enable the query-retrieve functionality. You will also need to
have installed Orthanc or an alternative:

	Orthanc enabled by default in Docker

	Installed in the Linux instructions and configured at DICOM Store SCP

	Installed in the Windows instructions and configured at to be written

To configure a DICOM Store SCP, on the Config menu select DICOM networking, then click
Add new Store and fill in the details (see figure 1):

[image: DICOM Store SCP configuration]

Figure 1: DICOM Store SCP configuration

	Name of local store node: This is the friendly name, such as OpenREM store

	Application Entity Title of the node: This is the DICOM name for the store, and must be letters or numbers only, no
spaces, and a maximum of 16 characters

	Port for store node: Port 104 is the reserved DICOM port, but it is common to use high ports such as 8104, partly
because ports up to 1024 usually need more privileges than for the high ports. However, if there is a firewall
between the remote nodes (modalities, PACS) and the OpenREM server, then you need to make sure that the firewall is
configured to allow the port you choose here

Status of DICOM Store SCP nodes

DICOM Store SCP advanced configuration

[image: DICOM Store SCP status "Alive"]

[image: DICOM Store SCP status "Association fail"]

Figure 3: DICOM Store SCP status - Alive and Association failed

DICOM Store SCP nodes that have been configured are listed in the left column of the DICOM network configuration page.
For each server, the basic details are displayed, including the Database ID which is required for command line/scripted
use of the query-retrieve function.

In the title row of the Store SCP config panel, the status will be reported either as “Server is alive” or “Error:
Association fail - server not running?” - see figure 3

Query retrieve of third-party system, such as a PACS or modality

To Query-Retrieve a remote host, you will need to configure both a local Store SCP and the remote host.

To configure a remote query retrieve SCP, on the Config menu select DICOM networking, then click
Add new QR Node and fill in the details:

	Name of QR node: This is the friendly name, such as PACS QR

	AE Title of the remote node: This is the DICOM name of the remote node, 16 or fewer letters and numbers, no spaces

	AE Title this server: This is the DICOM name that the query (DICOM C-Find) will come from. This may be important if
the remote node filters access based on calling aet. Normal rules of 16 or fewer letters and numbers, no spaces

	Remote port: Enter the port the remote node is using (eg 104)

	Remote IP address: The IP address of the remote node, for example 192.168.1.100

	Remote hostname: Alternatively, if your network has a DNS server that can resolve the hostnames, you can enter the
hostname instead. If the hostname is entered, it will be used in preference to the IP address, so only enter it if
you know it will be resolved.

Now go to the DICOM Query Retrieve Service documentation to learn how to use it.

Troubleshooting: openrem_store.log

If the default logging settings haven’t been changed then there will be a log files to refer to. The default
location is within your MEDIAROOT folder:

This file contains information about each echo and association that is made against the store node, and any objects that
are sent to it.

The following is an example of the log for a Philips dose info image being received:

[21/Feb/2016 21:13:43] INFO [remapp.netdicom.storescp:310] Starting AE... AET:MYSTOREAE01, port:8104
[21/Feb/2016 21:13:43] INFO [remapp.netdicom.storescp:314] Started AE... AET:MYSTOREAE01, port:8104
[21/Feb/2016 21:13:43] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:13:44] INFO [remapp.netdicom.storescp:54] Store SCP: Echo received
[21/Feb/2016 21:13:46] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:13:46] INFO [remapp.netdicom.storescp:54] Store SCP: Echo received
[21/Feb/2016 21:13:49] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:13:49] INFO [remapp.netdicom.storescp:54] Store SCP: Echo received
[21/Feb/2016 21:13:50] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:13:50] INFO [remapp.netdicom.storescp:54] Store SCP: Echo received
[21/Feb/2016 21:13:51] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:13:51] INFO [remapp.netdicom.storescp:54] Store SCP: Echo received
[21/Feb/2016 21:14:39] INFO [remapp.netdicom.storescp:46] Store SCP: association requested
[21/Feb/2016 21:14:39] INFO [remapp.netdicom.storescp:78] Received C-Store. Stn name NM-54316, Modality CT,
SOPClassUID Secondary Capture Image Storage, Study UID 1.2.840.113564.9.1.2843752344.47.2.5000947881 and Instance
UID 1.2.840.113704.7.1.1.4188.1234134540.349
[21/Feb/2016 21:14:39] INFO [remapp.netdicom.storescp:232] File
/var/openrem/media/dicom_in/1.2.840.113704.7.1.1.4188.1453134540.349.dcm written
[21/Feb/2016 21:14:39] INFO [remapp.netdicom.storescp:263] Processing as Philips Dose Info series
...etc

Configuration required for query-retrieve

You need a DICOM store service set up - see Importing data to OpenREM for details.

If you are using a third party DICOM Store server, then you will need to add the details as per DICOM Network Configuration
but do not use the “advanced” section.

To configure a remote query retrieve SCP, on the Config menu select DICOM networking, then click
Add new QR Node and fill in the details:

	Name of QR node: This is the friendly name, such as PACS QR

	AE Title of the remote node: This is the DICOM name of the remote node, 16 or fewer letters and numbers, no spaces

	AE Title this server: This is the DICOM name that the query (DICOM C-Find) will come from. This may be important if
the remote node filters access based on calling aet. Normal rules of 16 or fewer letters and numbers, no spaces

	Remote port: Enter the port the remote node is using (eg 104)

	Remote IP address: The IP address of the remote node, for example 192.168.1.100

	Remote hostname: Alternatively, if your network has a DNS server that can resolve the hostnames, you can enter the
hostname instead. If the hostname is entered, it will be used in preference to the IP address, so only enter it if
you know it will be resolved.

	Use Modality in Study Query: Some PACS systems (like Impax 6.6) need modality at study level for correct filtering.
if this option is checked, the modality tag is inserted in the study level request.

Advertencia

Modality is not a valid tag in a study level request (Modalities In Study is available instead). However, some PACS
systems require it for proper function, others will ignore it, and some will return zero results if the tag is
present.

DICOM Query Retrieve Service

To query retrieve dose related objects from a remote server, you need to review the DICOM Network Configuration documents
first to make sure you have created a DICOM Store node installed and configured which will import objects to OpenREM.

You will also need to set up the remote server to allow you to query-retrieve using it - the remote server will need
to be configured with details of the store node that you have configured.

Query-retrieve using the web interface

[image: Import Query-Retrieve menu]

Figure 1: Import Query-Retrieve menu

	On the Imports menu, select Query remote server - see figure 1. If the menu isn’t there, you need to check your
user permissions – see Configure the settings for details.

	Each configured query-retrieve node and each local store node is automatically tested to make sure they respond to a
DICOM echo - the results are presented at the top of the page. See figure 2 for an example.

[image: local and remote QR statuses]

Figure 2: Local and remote QR statuses

	Select the desired remote host, ie the PACS or modality you wish to query.

	Select the local store node you want to retrieve to.

	Select which modalities you want to query for - at least one must be ticked.

	Select a date range - the wider this is, the more stress the query will place on the remote server, and the higher
the likelyhood of the query being returned with zero results (a common configuration on the remote host to prevent
large database queries affecting other services). Defaults to “from yesterday”.

	If you wish to exclude studies based on their study description, enter the text here. Add several terms by separating
them with a comma. One example would be to exclude any studies with imported in the study description, if
your institution modifies this field on import. The matching is case-insensitive.

	Alternatively, you might want to only keep studies with particular terms in the study description. If so, enter them
in the next box, comma separated.

	You can also exclude studies by station name, or only keep them if they match the station name. This is only
effective if the remote system (the PACS) supports sending back station name information. By default, this is only
checked against series level responses (changed in OpenREM 1.0).

Advanced query options

	Attempt to get Toshiba dose images default not ticked: If you have done the extra installation and configuration
required for creating RDSRs from older Toshiba scanners, then you can tick this box for CT searches to get the
images needed for this process. See the logic description below for details.

	Ignore studies already in the database default ticked: By default OpenREM will attempt to avoid downloading any
DICOM objects (RDSRs or images) that have already been imported into the database. Untick this box to override that
behaviour and download all suitable objects. See the logic description below for details.

	Include SR only studies default not ticked: If you have a DICOM store with only the radiation dose structured
reports (RDSR) in, or a mix of whole studies and RDSRs without the corresponding study, then tick this box. Any
studies with images and RDSRS will be ignored (they can be found without this option). If this box is ticked any
modality choices will be ignored.

	Get SR series that return nothing at image level query default not ticked: If you have a DICOM store with SR
series that you know contain RDSR objects, but when queried your store says they are empty, then check this box. If
this behaviour is found, a message will be added to the openrem_qr.log at INFO level with the phrase
Try '-emptysr' option?. With the box checked the query will assume any SR series found contains an RDSR. Warning:
with this behavior, any non-RDSR structured report series (such as a radiologists report encoded as a structured
report) will be retrieved instead of images that could actually be used (for example with mammography and digital
radiographs). Therefore this option should be used with caution!

	Check station name include/exclude at study level default not ticked: Change this setting to enable checking of
station name include/exclude at study level instead of series level. This addresses issue #772 [https://bitbucket.org/openrem/openrem/issues/772] as some studies will
have different station name information at study level than at series level - if both levels are checked it is
impossible to get the desired response.

When you have finished the query parameters, click Submit

Review and retrieve

Once all the responses have been purged of unwanted modalities, study descriptions or study UIDs, the number of studies
of each type will be displayed and a button appears. Click Retrieve to request the remote server send the selected
objects to your selected Store node. This will be based on your original selection - changing the node on the left hand
side at this stage will have no effect.

The progress of the retrieve is displayed in the same place until the retrieve is complete. You can also see the query
and start the Retrieve in the DICOM query summary.

Query-retrieve using the command line interface

Running the command in different environments

Docker: In a command window/shell, navigate to the folder containing docker-compose.yml etc. Then precede
the command with docker-compose exec openrem:

$ docker-compose exec openrem openrem_qr.py -h

Linux: Activate the virtualenv - assuming default Ubuntu install:

$. /var/dose/veopenrem3/bin/activate
$ openrem_qr.py -h

Windows: Activate the virtualenv - docs to be written - and command might need the full path?:

> C:\OpenREM\veopenrem3\Scripts\activate.bat
> C:\OpenREM\veopenrem3\Scripts\openrem_qr.py -h

usage: openrem_qr.py [-h] [-ct] [-mg] [-fl] [-dx] [-nm]
 [-f yyyy-mm-dd] [-t yyyy-mm-dd] [-sd yyyy-mm-dd]
 [-tf hhmm] [-tt hhmm]
 [-e string] [-i string]
 [-sne string] [-sni string] [--stationname_study_level]
 [-toshiba] [-sr] [-dup] [-emptysr]
 qr_id store_id

Query remote server and retrieve to OpenREM

positional arguments:
 qr_id Database ID of the remote QR node
 store_id Database ID of the local store node

options:
 -h, --help show this help message and exit
 -ct Query for CT studies. Cannot be used with -sr
 -mg Query for mammography studies. Cannot be used with -sr
 -fl Query for fluoroscopy studies. Cannot be used with -sr
 -dx Query for planar X-ray studies (includes panoramic X-ray studies). Cannot be used with -sr
 -nm Query for nuclear medicine studies. Cannot be used with -sr
 -f yyyy-mm-dd, --dfrom yyyy-mm-dd
 Date from, format yyyy-mm-dd. Cannot be used with --single_date
 -t yyyy-mm-dd, --duntil yyyy-mm-dd
 Date until, format yyyy-mm-dd. Cannot be used with --single_date
 -sd yyyy-mm-dd, --single_date yyyy-mm-dd
 Date, format yyy-mm-dd. Cannot be used with --dfrom or --duntil
 -tf hhmm, --tfrom hhmm
 Time from, format hhmm. Requires --single_date.
 -tt hhmm, --tuntil hhmm
 Time until, format hhmm. Requires --single_date.
 -e string, --desc_exclude string
 Terms to exclude in study description, comma separated, quote whole string
 -i string, --desc_include string
 Terms that must be included in study description, comma separated, quote whole string
 -sne string, --stationname_exclude string
 Terms to exclude in station name, comma separated, quote whole string
 -sni string, --stationname_include string
 Terms to include in station name, comma separated, quote whole string
 --stationname_study_level
 Advanced: Filter station name at Study level, instead of at Series level
 -toshiba Advanced: Attempt to retrieve CT dose summary objects and one image from each series
 -sr Advanced: Use if store has RDSRs only, no images. Cannot be used with -ct, -mg, -fl, -dx
 -dup Advanced: Retrieve duplicates (objects that have been processed before)
 -emptysr Advanced: Get SR series that return nothing at image level query

As an example, if you wanted to query the PACS for DX images on the 5th and 6th April 2010 with any study descriptions
containing imported excluded, first you need to know the database IDs of the remote node and the local node you want
the images sent to. To find these, go to the DICOM Network Configuration page where the database ID is listed among the other
details for each node.

Assuming the PACS database ID is 2, and the store node ID is 1, the command would look something like:

$ docker-compose exec openrem openrem_qr.py 2 1 -dx -f 2010-04-05 -t 2010-04-06 -e "imported"

If you want to do this regularly to catch new studies, you might like to use a script something like this on Linux -
make sure you comment out or delete one of the options, and amend as necessary!

#!/bin/bash

ONEHOURAGO=$(date -d "1 hour ago" "+%Y-%m-%d")

Docker on Linux
/usr/local/bin/docker-compose -f /path/to/docker-compose.yml exec -T openrem openrem_qr.py 2 1 -dx -f $ONEHOURAGO -t $ONEHOURAGO -e "Imported"
Linux
/var/dose/veopenrem3/bin/python /var/dose/veopenrem3/bin/openrem_qr.py 2 1 -dx -f $ONEHOURAGO -t $ONEHOURAGO -e "Imported"

This script could be run once an hour using a cron job. By asking for the date an hour ago, you shouldn’t miss exams
taking place in the last hour of the day. As the script won’t run from the folder containing docker-compose.yml
the location of that file needs to be passed to docker-compose with the -f option. You can check the path to
docker-compose on your system using which docker-compose.

A similar script could be created as a batch file or PowerShell script on Windows and run using the scheduler. An
example PowerShell script is shown below:

Script to obtain all CT studies from a DICOM node on the day prior to the
date the script is run and import them into OpenREM.
Get yesterday's date

$dateString = "{0:yyyy-MM-dd}" -f (get-date).AddDays(-1)

Run the openrem_qr.py script with yesterday's date as the to and from date

Docker on Windows
docker-compose -f C:\Path\To\docker-compose.yml exec -T openrem openrem_qr.py 2 1 -ct -f $dateString -t $dateString
Windows
C:\OpenREM\veopenrem3\Scripts\python.exe C:\OpenREM\veopenrem3\Scripts\openrem_qr.py 2 1 -dx -f $ONEHOURAGO -t $ONEHOURAGO -e "Imported"

The above PowerShell script could be run on a regular basis by adding a task to the Windows Task Scheduler that
executes the powershell program with an argument of -file C:\path\to\script.ps1.

Querying with time range

It is now possible to query for studies in a time window when using query-retrieve from the command line (web interface
version will be introduced later). This can be particularly useful where PACS query responses are limited or null if the
query matches too many studies.

Using the --tfrom/-tf and/or the --tuntil/-tt arguments are only allowed if --single_date/-sd
argument is used.

Note: -sd 2018-03-19 is the same as using -f 2018-03-19 -t 2018-03-19, and can be used without the time
arguments.

	-tf used without -tt will search from tf until 23.59 that day.

	-tt used without -tf will search from 00.00 to tt that day.

	-tf and -tt used together will search from tf to tt.

For example, to search for CT from 12 noon to 3pm on 19th March 2018, using remote QR node database ID 2 and local store
database ID 1:

$ # Using Docker on Linux
$ docker-compose exec openrem openrem_qr.py 2 1 -ct -sd 2018-03-19 -tf 1200 -tt 1500

Query filtering logic

Study level query response processing

	First we query for each modality chosen in turn to get matching responses at study level.

	If the optional ModalitiesInStudy has been populated in the response, and if you have ticked
Include SR only studies, then any studies with anything other than just SR studies is removed from the
response list.

	If any study description filters have been added, and if the StudyDescription tags are returned by the remote
server, the study response list is filtered accordingly. The same applies to the station name filter if the option
to check station names at study level has been selected.

	For the remaining study level responses, each series is queried.

	If ModalitiesInStudy was not returned, it is now built from the series level responses.

	If the remote server returned everything rather than just the modalities we asked for, the study level responses are
now filtered against the modalities selected.

Series level query processing

	If station name filters have been added, and if the StationName tags are returned by the remote server, the series
list is filtered accordingly — unless the option to check station names at study level has been selected.

If mammography exams were requested, and a study has MG in:

	If one of the series is of type SR, an image level query is done to see if it is an RDSR. If it is, all the
other series responses are deleted (i.e. when the move request/”retrieve” is sent only the RDSR is requested
not the images.

	Otherwise the SR series responses are deleted and all the image series are requested.

If planar radiographic exams were requested, and a study has DX or CR in:

	Any SR series are checked at “image” level to see if they are RDSRs. If they are, the other series level responses
for that study are deleted.

	Otherwise the SR series responses are deleted and all the image series are requested.

If fluoroscopy exams were requested, and a study has RF or XA in:

	Any SR series are checked at “image” level to see if they are RDSRs or ESRs (Enhanced Structured Reports - not
currently used but will be in the future). Any other SR series responses are deleted.

	All non-SR series responses are deleted.

If CT exams were requested, and a study has CT in:

	Any SR series are checked at “image” level to see if they are RDSRs. If they are, all other SR and image series
responses are deleted. Otherwise, if it has an ESR series, again all other SR and image series responses are deleted.

	If there are no RDSR or ESR series, the other series are checked to see if they are Philips “Dose info” series. If
there are, other series responses are deleted.

	If there are no RDSR, ESR or “Dose info” series and the option to get Toshiba images has been selected, then an image
level query is performed for the first image in each series. If the image is not a secondary capture, all but the
first image are deleted from the image level responses and the image_level_move flag is set. If the image is a
secondary capture, the whole series response is kept.

	If there are no RDSR or ESR, series descriptions aren’t returned and the Toshiba option has been set, the image level
query is performed as per the previous point. This process will keep the responses that might have Philips “Dose info”
series.

	If there are no RDSR, ESR, series descriptions aren’t returned and the Toshiba option has not been set, each series
with more than five images in is deleted from the series response list - the remaining ones might be Philips “Dose
info” series.

If SR only studies were requested:

	Each series response is checked at “image” level to see which type of SR it is. If is not RDSR or ESR, the study
response is deleted.

If Get SR series that return nothing at image level query were requested:

	It is assumed that any SR series that appears to be empty actually contains an RDSR, and the other series are
dealt with as above for when an RDSR is found. If at the image level query the full data requested is returned, then
the series will be processed the same whether this option is selected or not.

Duplicates processing

For each remaining study in the query response, the Study Instance UID is checked against the studies already in
the OpenREM database.

If there is a match and the series level modality is SR (from a CT, or RF etc):

	The image level response will have the SOP Instance UID - this is checked against the SOP Instance UIDs recorded
with the matching study. If a match is found, the “image” level response is deleted.

If there is a match and the series level modality is MG, DX or CR:

	An image level query is made which will populate the image level responses with SOP Instance UIDs

	Each image level response is then processed and the SOP Instance UID is checked against the SOP Instance UIDs
recorded with the matching study. If a match is found, the “image” level response is deleted.

Once each series level response is processed:

	If the series no longer has any image level responses the series level response is deleted.

	If the study no longer has any series level responses the study level response is deleted.

DICOM query summary

[image: Go to query summary]

Figure 3: Go to query summary

Either by clicking on the «Go to query details page» when executing a query or by going to
Config > DICOM query summary you can review the current and older queries, check which files
were found on the remote, which studies/files were ignored and why,
and review the result of importing files which were retrieved.

[image: The query details page]

Figure 4: The query details page

By clicking on the studies of a query you can review the discovered DICOM series as well as
to some extent the individual files that are part of those series.
If no import tasks are shown, even though the study is marked for downloading, that probably means
that the query has not been retrieved, i.e. was aborted before completion.
In the example below the query was run with the setting to not ignore duplicates,
therefore the study was still downloaded but then thrown away by the import.

[image: The query study details page]

Figure 5: The query study details page

Troubleshooting: openrem_qr.log

Note that if a query does not work as expected the first location to check should be the DICOM query summary
and the Task management. However if that does not clarify the issue looking at the logs will be a good idea.

If the default logging settings haven’t been changed then there will be a log files to refer to. The default
location is within your logs folder:

This file contains information about the query, the status of the remote node, the C-Find response, the
analysis of the response, and the individual C-Move requests.

The following is an example of the start of the log for the following query which is run once an hour (ie some
responses will already have been imported):

openrem_qr.py 2 1 -dx -f 2016-05-04 -t 2016-05-04 -e "imported"

[04/May/2016 11:30:02] INFO [remapp.netdicom.qrscu:580] qrscu script called
[04/May/2016 11:30:02] INFO [remapp.netdicom.qrscu:595] Modalities are ['DX']
[04/May/2016 11:30:02] INFO [remapp.netdicom.qrscu:601] Date from: 2016-05-04
[04/May/2016 11:30:02] INFO [remapp.netdicom.qrscu:604] Date until: 2016-05-04
[04/May/2016 11:30:02] INFO [remapp.netdicom.qrscu:610] Study description exclude terms are ['imported']
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:267] Request association with Hospital PACS PACSAET01 (PACSEAT01 104 DICOM_QR_SCP)
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:277] assoc is ... <Association(Thread-7208, started daemon 140538998306560)>
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:280] DICOM Echo ...
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:282] done with status Success
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:284] DICOM FindSCU ...
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:311] Currently querying for DX studies...
[04/May/2016 11:30:03] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:04] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:04] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:04] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:05] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:05] INFO [remapp.netdicom.qrscu:311] Currently querying for CR studies...
[04/May/2016 11:30:05] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:05] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:06] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:06] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:06] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:07] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:10] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:10] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:11] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:11] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:12] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:12] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:12] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:12] INFO [remapp.netdicom.qrscu:339] Checking to see if any of the 16 studies are already in the OpenREM database
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:343] Now have 11 studies
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:349] Deleting studies we didn't ask for
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is DX, mod_set is ["CR"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is CR, mod_set is ["CR"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is DX, mod_set is ["PR", "DX"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is CR, mod_set is ["PR", "DX"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is DX, mod_set is ["DX"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is CR, mod_set is ["DX"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is DX, mod_set is ["PR", "CR"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:358] mod is CR, mod_set is ["PR", "CR"]
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:367] Now have 11 studies
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:372] Deleting series we can't use
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:408] Now have 11 studies
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:413] Deleting any studies that match the exclude criteria
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:422] Now have 6 studies after deleting any containing any of [u'imported']
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:438] Release association
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:499] Preparing to start move request
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:504] Requesting move of 6 studies
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:509] Mv: study_no 1
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:515] Mv: study no 1 series no 1
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:528] Requesting move: modality DX, study 1 (of 6) series 1 (of 1). Series contains 1 objects
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:13] INFO [remapp.netdicom.qrscu:44] Move association requested
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:53] Move association released
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:532] _move_req launched
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:509] Mv: study_no 2
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:515] Mv: study no 2 series no 1
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:528] Requesting move: modality DX, study 2 (of 6) series 1 (of 1). Series contains 2 objects
[04/May/2016 11:30:18] INFO [remapp.netdicom.qrscu:33] Association response received
[04/May/2016 11:30:19] INFO [remapp.netdicom.qrscu:44] Move association requested
[04/May/2016 11:30:29] INFO [remapp.netdicom.qrscu:48] gg is Pending
[04/May/2016 11:30:30] INFO [remapp.netdicom.qrscu:53] Move association released
...etc

Navigating, filtering and study details

Navigating the OpenREM web interface

Depending on your web server setup, your web interface to OpenREM will
usually be at http://yourserver/openrem or if you are using the test web
server then it might be at http://localhost:8000/openrem.

The home page for OpenREM should look something like this when it is
populated with studies:

[image: OpenREM homepage screenshot]

OpenREM homepage screenshot

By selecting the links in the navigation bar at the top, you can view all
of the CT, fluoroscopy, mammography, radiographic or nuclear medicine studies. Alternatively, click on any row to filter by that system.

The modality tables can be sorted by any of the columns by clicking on the
column header that you wish to sort by.

If you are not logged in, clicking any of the links will bring up the log in page.

Filtering for specific studies

This image shows the CT studies view, available to any logged in user, filtered by entering terms in the
boxes on the right hand side to show just the studies where the modality
manufacturer name includes the term “Siemens”:

[image: Filtering CT studies]

Filtering CT studies

The search fields can all be used on their own or together, and they are
all case insensitive “contains” searches. The exception is the date field,
where both from and to have to be filled in (if either are), and the format
must be yyyy-mm-dd. There currently isn’t any more complex filtering
available, but it does exist as issue 17 [https://bitbucket.org/openrem/openrem/issue/17/]
for a future release.

The last box below the filtering search boxes is the ordering preference.

CT: specifying number of event types

It is possible to filter for studies that have specific numbers of each acquisition type, or to only include studies
have at least some (>0), or to include only studies that have zero acquisitions of a specific type.

For example, if the standard CT Abdomen on a particular scanner has two localisers and one spiral scan,
then to filter for all the studies that followed this without deviation (an extra localiser or an extra series)
the filters might be set to the particular Display Name and Requested Procedure, and Num. spiral events set
to one and Num. localisers set to two. This can be useful for exporting a clean set of data to process
for a dose audit.

Setting the number of studies displayed per page

The number of studies displayed per page can be controlled by changing the
value selected in the Items per page drop down box, located beneath the
chart options:

[image: Setting the number of studies per page]

Setting the number of studies per page

Viewing study details

By clicking on the study description link (in blue), you can see more
details for an individual study:

[image: Individual CT study]

Individual CT study

Not all the details stored for any one study are displayed, just those thought
to be most useful. If there are others you’d like to see, add an issue to the tracker.

The final field in the summary at the top is called “Test patient indicators?”
When studies are imported the ID and patient name fields are both ignored, but they
are parsed to check if they have “phy”, “test” or “qa” in them to help exclude them
from the data analysis. If they do, then this information is added to the
field and is displayed both in the web interface as a Test patient indicator
and in the Excel export. The name and ID themselves are not reproduced,
simply the presence of one of the key words. Therefore a patient named
“Phyliss” would trigger this, but only “Phy” would be reproduced in this field.
Other fields will also help to confirm whether a study is for a real patient
such as the lack of an Accession Number and an unusual patient age.

Nota

For fluoroscopy the table showing details of each exposure can be sorted by
clicking on the table headings.

A note on time data for fluoroscopy studies

On the page showing a specific fluoroscopy study there is a table that shows the
details of each irradiation event in the study. This table includes a column
labelled as:

Duration (ms)
Exposure time (ms)

The Duration value is the amount of time that the exposure switch or pedal was
pressed (technically, this should be the time from the loading of the first x-ray
pulse to the time of the trailing edge of the final pulse for that irradiation
event). The Exposure time value is different: this is the total time that the
x-ray beam was actually switched on for during the irradiation event. So for
pulsed fluoroscopy the Exposure time will be (much) shorter than the
Duration.

Near the top of each fluoroscopy study in the detail view is a table summarising the
DAP, dose at reference point and duration for each irradiation type used in the study.
Totals are also shown. The Total duration values in this table show the amount
of time that the exposure switch or pedal was pressed.

Charts

From OpenREM version 1.0.0+ charts use the Plotly [https://plotly.com/python/] open source Python library.

Chart types

The charts below are examples of the types of chart included in OpenREM version 1.0.0+. The examples are fully
interactive in the same way as the charts included in a live OpenREM system. The data contained in the example charts
is synthetic.

Single-clicking on a legend entry toggles the display of that series. Double-clicking on a legend entry hides all but
that series; double-click again to show all series.

Hovering the cursor over a chart causes the chart menu to appear along the top right corner. From the menu you can:

	save a bitmap version of the chart

	set zoom, pan and selection options

	autoscale the chart

	reset the axes, and also reset the regions

	toggle spike lines to graphically illustrate x- and y-axis data values on hover

	choose whether to show the closest data when hovering, or to compare data on hover

Bar chart of average values across categories

These can be configured to show mean or median data. The example below shows the median DAP for each requested procedure
name containing the word «knee» across eight x-ray rooms.

When viewing a chart of thi